In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms or crossed parallelograms.
Antiparallelograms occur as the vertex figures of certain nonconvex uniform polyhedra. In the theory of four-bar linkages, the linkages with the form of an antiparallelogram are also called butterfly linkages or bow-tie linkages, and are used in the design of non-circular gears. In celestial mechanics, they occur in certain families of solutions to the 4-body problem.
Every antiparallelogram has an axis of symmetry, with all four vertices on a circle. It can be formed from an isosceles trapezoid by adding the two diagonals and removing two parallel sides. The signed area of every antiparallelogram is zero.
An antiparallelogram is a special case of a crossed quadrilateral, with two pairs of equal-length edges. In general, crossed quadrilaterals can have unequal edges. A special form of the antiparallelogram is a crossed rectangle, in which two opposite edges are parallel. Every antiparallelogram is a cyclic quadrilateral, meaning that its four vertices all lie on a single circle. Additionally, the four extended sides of any antiparallelogram are the bitangents of two circles, making antiparallelograms closely related to the tangential quadrilaterals, ex-tangential quadrilaterals, and kites (which are both tangential and ex-tangential).
Every antiparallelogram has an axis of symmetry through its crossing point. Because of this symmetry, it has two pairs of equal angles and two pairs of equal sides.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra, 5 quasiregular ones, and 48 semiregular ones. There are also two infinite sets of uniform star prisms and uniform star antiprisms.
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals.
In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors.
We explore a new approach for synthesizing moiré images that can be used for authentication of documents. For synthesizing moiré images, we need two layers: a base layer made of replicated bands or parallelograms and a revealing layer made of transparent l ...
This letter addresses the synthesis of reflective cells approaching a given desired Floquet's scattering matrix. This work is motivated by the need to obtain much finer control of reflective metasurfaces by controlling not only their copolarized reflection ...
Institute of Electrical and Electronics Engineers2012