In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms or crossed parallelograms.
Antiparallelograms occur as the vertex figures of certain nonconvex uniform polyhedra. In the theory of four-bar linkages, the linkages with the form of an antiparallelogram are also called butterfly linkages or bow-tie linkages, and are used in the design of non-circular gears. In celestial mechanics, they occur in certain families of solutions to the 4-body problem.
Every antiparallelogram has an axis of symmetry, with all four vertices on a circle. It can be formed from an isosceles trapezoid by adding the two diagonals and removing two parallel sides. The signed area of every antiparallelogram is zero.
An antiparallelogram is a special case of a crossed quadrilateral, with two pairs of equal-length edges. In general, crossed quadrilaterals can have unequal edges. A special form of the antiparallelogram is a crossed rectangle, in which two opposite edges are parallel. Every antiparallelogram is a cyclic quadrilateral, meaning that its four vertices all lie on a single circle. Additionally, the four extended sides of any antiparallelogram are the bitangents of two circles, making antiparallelograms closely related to the tangential quadrilaterals, ex-tangential quadrilaterals, and kites (which are both tangential and ex-tangential).
Every antiparallelogram has an axis of symmetry through its crossing point. Because of this symmetry, it has two pairs of equal angles and two pairs of equal sides.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
vignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors.
This letter addresses the synthesis of reflective cells approaching a given desired Floquet's scattering matrix. This work is motivated by the need to obtain much finer control of reflective metasurfaces by controlling not only their copolarized reflection ...
Institute of Electrical and Electronics Engineers2012
We explore a new approach for synthesizing moiré images that can be used for authentication of documents. For synthesizing moiré images, we need two layers: a base layer made of replicated bands or parallelograms and a revealing layer made of transparent l ...