The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.
Viruses can easily infect microorganisms in the microbial loop due to their relative abundance compared to microbes. Prokaryotic and eukaryotic mortality contribute to carbon nutrient recycling through cell lysis. There is evidence as well of nitrogen (specifically ammonium) regeneration. This nutrient recycling helps stimulates microbial growth. As much as 25% of the primary production from phytoplankton in the global oceans may be recycled within the microbial loop through the viral shunt.
Viral shunt was first described in 1999 by Steven W. Wilhelm and Curtis A. Suttle. Their original paper has since been cited over 1000 times. For his contributions to understanding of viral roles in marine ecosystems, Suttle has received numerous awards, including being named a Fellow of the Royal Society of Canada, receiving the A.G. Huntsman Award for Excellence in Marine Science, and the Timothy R. Parsons Medal for Excellence in Ocean Sciences from the Department of Fisheries and Oceans. Both Suttle and Wilhelm have been elected Fellows of the American Academy of Microbiology as well as the Association for the Sciences of Limnology and Oceanography (ASLO).
The field of marine virology has rapidly expanded since the mid-1990s, coinciding with the first publication of viral shunt. During this time, further studies have established the existence of the viral shunt as a "fact" of the field. The recycling of nutrients in the viral shunt has indicated to scientists that viruses are a necessary component in new models of global change. Virologists in soil sciences have begun to investigate the application of viral shunt to explain nutrient recycling in terrestrial systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Marine viruses are defined by their habitat as viruses that are found in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Viruses are small infectious agents that can only replicate inside the living cells of a host organism, because they need the replication machinery of the host to do so. They can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.
Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.
Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters. Particulate organic carbon (POC) is a closely related term often used interchangeably with POM. POC refers specifically to the mass of carbon in the particulate organic material, while POM refers to the total mass of the particulate organic matter.
Explores redox reactions in natural waters, electron transfer mediators, microbial activity, and the impact of organic carbon influx on aquifer redox conditions.
Explores microbial fermentation for ethanol and methane production, covering pathways, enzymes, methanogens, and biogas generation.
, , , ,
The extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to exp ...
Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral ...
Hydrological extremes can affect nutrient export from catchments to streams, posing a threat to aquatic ecosystems. In this study, we investigated the effects of hydrological drought on nitrate concentrations in the streamflow of 182 German catchments from ...