In mathematics, the elasticity or point elasticity of a positive differentiable function f of a positive variable (positive input, positive output) at point a is defined as
or equivalently
It is thus the ratio of the relative (percentage) change in the function's output with respect to the relative change in its input , for infinitesimal changes from a point . Equivalently, it is the ratio of the infinitesimal change of the logarithm of a function with respect to the infinitesimal change of the logarithm of the argument. Generalisations to multi-input-multi-output cases also exist in the literature.
The elasticity of a function is a constant if and only if the function has the form for a constant .
The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero.
The concept of elasticity is widely used in economics and Metabolic Control Analysis; see elasticity (economics) and Elasticity coefficient respectively for details.
Rules for finding the elasticity of products and quotients are simpler than those for derivatives. Let f, g be differentiable. Then
The derivative can be expressed in terms of elasticity as
Let a and b be constants. Then
In economics, the price elasticity of demand refers to the elasticity of a demand function Q(P), and can be expressed as (dQ/dP)/(Q(P)/P) or the ratio of the value of the marginal function (dQ/dP) to the value of the average function (Q(P)/P). This relationship provides an easy way of determining whether a demand curve is elastic or inelastic at a particular point. First, suppose one follows the usual convention in mathematics of plotting the independent variable (P) horizontally and the dependent variable (Q) vertically. Then the slope of a line tangent to the curve at that point is the value of the marginal function at that point. The slope of a ray drawn from the origin through the point is the value of the average function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course focuses on mechanics of solid thin films and small scale structures and on state-of-the-art experimental techniques employed for evaluation and extraction of thin films and small scale stru
Dans ce cours, les outils qui permettent de décrire les matériaux non pas au niveau atomique mais au niveau d'un continuum sont présentés. Les tenseurs des contraintes et des déformations, les lois de
The course focuses on the current investigations in the fields of fatigue and fracture of composite materials and composite structural components, like adhesively-bonded joints. Students would be able
In economics, elasticity measures the responsiveness of one economic variable to a change in another. If the price elasticity of the demand of something is -2, a 10% increase in price causes the quantity demanded to fall by 20%. Elasticity in economics provides an understanding of changes in the behavior of the buyers and sellers with price changes. There are two types of elasticity for demand and supply, one is inelastic demand and supply and other one is elastic demand and supply.
A good's price elasticity of demand (, PED) is a measure of how sensitive the quantity demanded is to its price. When the price rises, quantity demanded falls for almost any good, but it falls more for some than for others. The price elasticity gives the percentage change in quantity demanded when there is a one percent increase in price, holding everything else constant. If the elasticity is −2, that means a one percent price rise leads to a two percent decline in quantity demanded.
Explores constitutive equations in geomechanics, stress-strain behavior, and practical applications in engineering.
Explores snow mechanics, focusing on avalanche release and crack propagation mechanisms, including stress redistribution and safety considerations.
Explores constitutive modelling in geomechanics, focusing on stress-strain behavior and the application of elastic models in analytical and numerical methods.
Online Transaction Processing (OLTP) deployments are migrating from on-premise to cloud settings in order to exploit the elasticity of cloud infrastructure which allows them to adapt to workload variations. However, cloud adaptation comes at the cost of re ...
We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow v ...
In this thesis we address various factors that contribute both theoretically and practically to mitigating supply demand mismatches. The thesis is composed of three chapters, where each chapter is an independent scientific paper. In the first paper, we dev ...