Bioaccumulation is the gradual accumulation of substances, such as pesticides or other chemicals, in an organism. Bioaccumulation occurs when an organism absorbs a substance faster than it can be lost or eliminated by catabolism and excretion. Thus, the longer the biological half-life of a toxic substance, the greater the risk of chronic poisoning, even if environmental levels of the toxin are not very high. Bioaccumulation, for example in fish, can be predicted by models. Hypothesis for molecular size cutoff criteria for use as bioaccumulation potential indicators are not supported by data. Biotransformation can strongly modify bioaccumulation of chemicals in an organism.
Toxicity induced by metals is associated with bioaccumulation and biomagnification. Storage or uptake of a metal faster than it is metabolized and excreted leads to the accumulation of that metal. The presence of various chemicals and harmful substances in the environment can be analyzed and assessed with a proper knowledge on bioaccumulation helping with chemical control and usage.
An organism can take up chemicals by breathing, absorbing through skin or swallowing. When the concentration of a chemical is higher within the organism compared to its surroundings (air or water), it is referred to as bioconcentration. Biomagnification is another process related to bioaccumulation as the concentration of the chemical or metal increases as it moves up from one trophic level to another. Naturally, the process of bioaccumulation is necessary for an organism to grow and develop; however, accumulation of harmful substances can also occur.
An example of poisoning in the workplace can be seen from the phrase "mad as a hatter" (18th and 19th century England). Mercury was used in stiffening the felt used to make hats involved. This forms organic species such as methylmercury, which is lipid-soluble (fat-soluble), and tends to accumulate in the brain, resulting in mercury poisoning. Other lipid-soluble poisons include tetraethyllead compounds (the lead in leaded petrol), and DDT.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ecotoxicology aims to understand the impact of chemicals and other stressors on organisms in the environment with a particular focus on population-, community- and ecosystem effects. Based on a mechan
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Explores Persistent Organic Pollutants (POPs) sources, bioaccumulation potential, and toxicity, focusing on PAHs and pesticides impact on the environment and human health.
Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformatio ...
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum (haɪˈdrɑrdʒərəm ) from the Greek words hydro (water) and argyros (silver). A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context. In metallurgy, for example, a heavy metal may be defined on the basis of density, whereas in physics the distinguishing criterion might be atomic number, while a chemist would likely be more concerned with chemical behaviour. More specific definitions have been published, none of which have been widely accepted.
Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.
Bioaccumulation is defined as the enrichment of a compound in an organism relative to the surrounding water or its food, and is an important endpoint in chemical risk assessment. Under laboratory conditions, bioaccumulation is measured as bioconcentration ...
Type C hepatic encephalopathy (HE) is a severe neuropsychiatric complication of chronic liver disease, for which the prognosis is poor in the absence of liver transplantation. Cirrhosis in type C HE leads to a toxic accumulation of ammonia in the blood, wh ...