Levitation (from Latin , ) is the process by which an object is held aloft in a stable position, without mechanical support via any physical contact. Levitation is accomplished by providing an upward force that counteracts the pull of gravity (in relation to gravity on earth), plus a smaller stabilizing force that pushes the object toward a home position whenever it is a small distance away from that home position. The force can be a fundamental force such as magnetic or electrostatic, or it can be a reactive force such as optical, buoyant, aerodynamic, or hydrodynamic. Levitation excludes floating at the surface of a liquid because the liquid provides direct mechanical support. Levitation excludes hovering flight by insects, hummingbirds, helicopters, rockets, and balloons because the object provides its own counter-gravity force. Levitation (on Earth or any planetoid) requires an upward force that cancels out the weight of the object, so that the object does not fall (accelerate downward) or rise (accelerate upward). For positional stability, any small displacement of the levitating object must result in a small change in force in the opposite direction. the small changes in force can be accomplished by gradient field(s) or by active regulation. If the object is disturbed, it might oscillate around its final position, but its motion eventually decreases to zero due to damping effects. (In a turbulent flow, the object might oscillate indefinitely.) Levitation techniques are useful tools in physics research. For example, levitation methods are useful for high-temperature melt property studies because they eliminate the problem of reaction with containers and allow deep undercooling of melts. The containerless conditions may be obtained by opposing gravity with a levitation force instead of allowing an entire experiment to freefall. Magnetic levitation Magnetic levitation is the most commonly seen and used form of levitation. Diamagnetic materials are commonly used for demonstration purposes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (32)
Related concepts (1)
Magnetic levitation
Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces. The two primary issues involved in magnetic levitation are lifting forces: providing an upward force sufficient to counteract gravity, and stability: ensuring that the system does not spontaneously slide or flip into a configuration where the lift is neutralized.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.