Summary
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form: where , and are the pressure, volume and temperature respectively; is the amount of substance; and is the ideal gas constant. It can also be derived from the microscopic kinetic theory, as was achieved (apparently independently) by August Krönig in 1856 and Rudolf Clausius in 1857. The state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature used in the equation of state is an absolute temperature: the appropriate SI unit is the kelvin. The most frequently introduced forms are:where: is the absolute pressure of the gas, is the volume of the gas, is the amount of substance of gas (also known as number of moles), is the ideal, or universal, gas constant, equal to the product of the Boltzmann constant and the Avogadro constant, is the Boltzmann constant, is the Avogadro constant, is the absolute temperature of the gas, is the number of particles (usually atoms or molecules) of the gas. In SI units, p is measured in pascals, V is measured in cubic metres, n is measured in moles, and T in kelvins (the Kelvin scale is a shifted Celsius scale, where 0.00 K = −273.15 °C, the lowest possible temperature). R has for value 8.314 J/(mol·K) = 1.989 ≈ 2 cal/(mol·K), or 0.0821 L⋅atm/(mol⋅K). How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (248)
Chemical Equilibria and Reactivity
Explores gas diffusion, effusion, ideal gas law, pressure, kinetic theory, and gas laws.
Show more
Related publications (94)