A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).
The synchrotron principle was invented by Vladimir Veksler in 1944. Edwin McMillan constructed the first electron synchrotron in 1945, arriving at the idea independently, having missed Veksler's publication (which was only available in a Soviet journal, although in English). The first proton synchrotron was designed by Sir Marcus Oliphant and built in 1952.
Several specialized types of synchrotron machines are used today:
A storage ring is a special type of synchrotron in which the kinetic energy of the particles is kept constant.
A synchrotron light source is a combination of different electron accelerator types, including a storage ring in which the desired electromagnetic radiation is generated. This radiation is then used in experimental stations located on different beamlines. In addition to the storage ring, a synchrotron light source usually contains a linear accelerator (linac) and another synchrotron which is sometimes called a booster in this context. The linac and the booster are used to successively accelerate the electrons to their final energy before they are magnetically "kicked" into the storage ring.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the acceleration they undergo as they spiral around the lines of the magnetic field.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers.
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Introduction générale sur l'état des connaissances en physique des particules élémentaires: de la cinématique relativiste à l'interprétation phénoménologique des collisions à haute énergie.
Modern synchrotron-radiation methods not only provide data of exceptional quality, but have allowed previously inaccessible experiments to be performed. The school will give a broad overview of all po
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
Explores surface scattering phenomena, electron wavelength, constructive interference, organo-metallic particles, and synchrotron radiation in nanosciences.
Covers the impact of synchrotron radiation on the beam and the exponential decay of the emittance.
Covers the properties of synchrotron radiation, including its emission by relativistic particles and its effect on the beam through radiation damping.
Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
In this overview article, we present the main features of the upgraded ID27 beamline which is fully optimised to match the exceptional characteristics of the new Extremely Bright Source (EBS) of the European Synchrotron Radiation Facility (ESRF). The ID27 ...
Taylor & Francis Ltd2024
, , , , , , ,
In this work, we present FEMU, an open-source RISC-V emulation platform to support the exploration of accelerator-based edge applications. ...