A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not – in other words, a query returns either "possibly in set" or "definitely not in set". Elements can be added to the set, but not removed (though this can be addressed with the counting Bloom filter variant); the more items added, the larger the probability of false positives.
The high level idea is to map elements x∈X to values y=h(x)∈Y using a hash function h, and then test for membership of x in X by checking whether y'=h(x')∈Y, and do that using multiple hash functions h.
Bloom proposed the technique for applications where the amount of source data would require an impractically large amount of memory if "conventional" error-free hashing techniques were applied. He gave the example of a hyphenation algorithm for a dictionary of 500,000 words, out of which 90% follow simple hyphenation rules, but the remaining 10% require expensive disk accesses to retrieve specific hyphenation patterns. With sufficient core memory, an error-free hash could be used to eliminate all unnecessary disk accesses; on the other hand, with limited core memory, Bloom's technique uses a smaller hash area but still eliminates most unnecessary accesses. For example, a hash area only 15% of the size needed by an ideal error-free hash still eliminates 85% of the disk accesses.
More generally, fewer than 10 bits per element are required for a 1% false positive probability, independent of the size or number of elements in the set.
An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different hash functions defined, each of which maps or hashes some set element to one of the m array positions, generating a uniform random distribution. Typically, k is a small constant which depends on the desired false error rate ε, while m is proportional to k and the number of elements to be added.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides a deep understanding of the concepts behind data management systems. It covers fundamental data management topics such as system architecture, data models, query processing and op
In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function. Perfect hash functions may be used to implement a lookup table with constant worst-case access time. A perfect hash function can, as any hash function, be used to implement hash tables, with the advantage that no collision resolution has to be implemented.
Cuckoo hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table, with worst-case constant lookup time. The name derives from the behavior of some species of cuckoo, where the cuckoo chick pushes the other eggs or young out of the nest when it hatches in a variation of the behavior referred to as brood parasitism; analogously, inserting a new key into a cuckoo hashing table may push an older key to a different location in the table.
In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing".
Information collected through sensor measurements has the potential to improve knowledge of complex-system behavior, leading to better decisions related to system management. In this situation, and particularly when using digital twins, the quality of sens ...
In this work, we present a simple biometric indexing scheme which is binning and retrieving cancelable deep face templates based on frequent binary patterns. The simplicity of the proposed approach makes it applicable to unprotected as well as protected, i ...
Applications such as large-scale sparse linear algebra and graph analytics are challenging to accelerate on FPGAs due to the short irregular memory accesses, resulting in low cache hit rates. Nonblocking caches reduce the bandwidth required by misses by re ...