**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Course# MATH-115(a): Advanced linear algebra II

Summary

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

Moodle Page

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

Related MOOCs (19)

Related courses (32)

Related concepts (153)

Lectures in this course (27)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Friedrich Eisenbrand

Friedrich Eisenbrand's main research interests lie in the field of discrete optimization, in particular in algorithms and complexity, integer programming, geometry of numbers, and applied optimization. He is best known for his work on efficient algorithms ...

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

MATH-115(b): Advanced linear algebra II

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.

COM-406: Foundations of Data Science

We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an

CIVIL-321: Numerical modelling of solids and structures

La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de

MATH-110(a): Advanced linear algebra I

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

Orthogonality

In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity. Orthogonality is also used with various meanings that are often weakly related or not related at all with the mathematical meanings. The word comes from the Ancient Greek ὀρθός (), meaning "upright", and γωνία (), meaning "angle". The Ancient Greek ὀρθογώνιον () and Classical Latin orthogonium originally denoted a rectangle. Later, they came to mean a right triangle.

Unitary matrix

In linear algebra, an invertible complex square matrix U is unitary if its conjugate transpose U* is also its inverse, that is, if where I is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (†), so the equation above is written For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes.

Inner product space

In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates.

Orthonormal basis

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for arises in this fashion.

Orthographic projection

Orthographic projection (also orthogonal projection and analemma) is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface. The obverse of an orthographic projection is an oblique projection, which is a parallel projection in which the projection lines are not orthogonal to the projection plane.

Covers symmetric matrices, eigenvalues, and diagonalization process for spectral theorem applications.

Covers positive definite matrices and their properties, focusing on strict positivity of principal minors.

Explores the Spectral Theorem, emphasizing the Min-Max Criterion for symmetric matrices and the properties of positive definite matrices.

Covers Singular Value Decomposition and Pseudoinverse, explaining their applications in data compression and linear systems.

Explores finding the minimal solution of a problem using orthogonal bases and factorization, emphasizing uniqueness and practical examples.