Clock drift refers to several related phenomena where a clock does not run at exactly the same rate as a reference clock. That is, after some time the clock "drifts apart" or gradually desynchronizes from the other clock. All clocks are subject to drift, causing eventual divergence unless resynchronized. In particular, the drift of crystal-based clocks used in computers requires some synchronization mechanism for any high-speed communication. Computer clock drift can be utilized to build random number generators. These can however be exploited by timing attacks.
Frequency drift
Everyday clocks such as wristwatches have finite precision. Eventually they require correction to remain accurate. The rate of drift depends on the clock's quality, sometimes the stability of the power source, the ambient temperature, and other subtle environmental variables. Thus the same clock can have different drift rates at different occasions.
More advanced clocks and old mechanical clocks often have some kind of speed trimmer where one can adjust the speed of the clock and thus correct for clock drift. For instance, in pendulum clocks the clock drift can be manipulated by slightly changing the length of the pendulum.
A quartz oscillator is less subject to drift due to manufacturing variances than the pendulum in a mechanical clock. Hence most everyday quartz clocks do not have an adjustable drift correction.
Atomic clocks are very precise and have nearly no clock drift. Even the Earth's rotation rate has more drift and variation in drift than an atomic clock due to tidal acceleration and other effects. The principle behind the atomic clock has enabled scientists to re-define the SI unit second in terms of exactly 9192631770 oscillations of the caesium-133 atom. The precision of these oscillations allows atomic clocks to drift roughly only one second in a hundred million years; as of 2015, the most accurate atomic clock loses one second every 15 billion years.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:The second, symbol s, is the SI unit of time.
Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of mean solar time (such as UT1) at 0° longitude (at the IERS Reference Meridian as the currently used prime meridian) and is not adjusted for daylight saving time. It is effectively a successor to Greenwich Mean Time (GMT). The coordination of time and frequency transmissions around the world began on 1 January 1960.
Regulators are used in time-sensitive networks in order to reshape traffic reducing the burstiness generated by the aggregation systems within the network. Regulators, in terms of the IEEE TSN group are defined as Asynchronous Traffic Shaping or what in th ...
2020
In this paper, we consider the problem of cross-chain payment whereby customers of different escrows-implemented by a bank or a blockchain smart contract-successfully transfer digital assets without trusting each other. Prior to this work, cross-chain paym ...
SPRINGER2023
, , ,
We report on the fast production and weakly destructive detection of a Fermi gas with tunable interactions in a high finesse cavity. The cavity is used both with far off-resonant light to create a deep optical dipole trap, and with near-resonant light to r ...