A hard disk drive failure occurs when a hard disk drive malfunctions and the stored information cannot be accessed with a properly configured computer.
A hard disk failure may occur in the course of normal operation, or due to an external factor such as exposure to fire or water or high magnetic fields, or suffering a sharp impact or environmental contamination, which can lead to a head crash.
The stored information on a hard drive may also be rendered inaccessible as a result of data corruption, disruption or destruction of the hard drive's master boot record, or by malware deliberately destroying the disk's contents.
There are a number of causes for hard drives to fail including: human error, hardware failure, firmware corruption, media damage, heat, water damage, power issues and mishaps. Drive manufacturers typically specify a mean time between failures (MTBF) or an annualized failure rate (AFR) which are population statistics that can't predict the behavior of an individual unit. These are calculated by constantly running samples of the drive for a short period of time, analyzing the resultant wear and tear upon the physical components of the drive, and extrapolating to provide a reasonable estimate of its lifespan. Hard disk drive failures tend to follow the concept of the bathtub curve. Drives typically fail within a short time if there is a defect present from manufacturing. If a drive proves reliable for a period of a few months after installation, the drive has a significantly greater chance of remaining reliable. Therefore, even if a drive is subjected to several years of heavy daily use, it may not show any notable signs of wear unless closely inspected. On the other hand, a drive can fail at any time in many different situations.
The most notorious cause of drive failure is a head crash, where the internal read-and-write head of the device, usually just hovering above the surface, touches a platter, or scratches the magnetic data-storage surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functioning as secondary storage in the hierarchy of computer storage. It is also sometimes called a semiconductor storage device, a solid-state device or a solid-state disk, even though SSDs lack the physical spinning disks and movable read–write heads used in hard disk drives (HDDs) and floppy disks. SSD also has rich internal parallelism for data processing.
Introduces memory storage technologies, hierarchies, and their impact on performance.
Explores memory hierarchy, CPU caches, SSD, HDD, and disk storage anatomy.
Covers accessibility in human-machine interfaces, including alternative interfaces, assistive technologies, software accessibility principles, and document accessibility.
The landscape of computing is changing, thanks to the advent of modern networking equipment that allows machines to exchange information in as little as one microsecond. Such advancement has enabled microsecond-scale distributed computing, where entire dis ...
EPFL2023
, ,
A modular multiple frequency coils inductive link system to wirelessly provide power for at least a medical implant at an output of a receiving coil, whereby the receiving coil is configured to be implanted in an organism. The modular multiple frequency co ...
Low-dimensional representations of underdamped systems often provide useful insights and analytical tractability. Here, we build such representations via information projections, obtaining an optimal model that captures the most information on observed spa ...