In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.
The gross structure of line spectra is the line spectra predicted by the quantum mechanics of non-relativistic electrons with no spin. For a hydrogenic atom, the gross structure energy levels only depend on the principal quantum number n. However, a more accurate model takes into account relativistic and spin effects, which break the degeneracy of the energy levels and split the spectral lines. The scale of the fine structure splitting relative to the gross structure energies is on the order of (Zα)2, where Z is the atomic number and α is the fine-structure constant, a dimensionless number equal to approximately 1/137.
The fine structure energy corrections can be obtained by using perturbation theory. To perform this calculation one must add the three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.
These corrections can also be obtained from the non-relativistic limit of the Dirac equation, since Dirac's theory naturally incorporates relativity and spin interactions.
This section discusses the analytical solutions for the hydrogen atom as the problem is analytically solvable and is the base model for energy level calculations in more complex atoms.
The gross structure assumes the kinetic energy term of the Hamiltonian takes the same form as in classical mechanics, which for a single electron means
where V is the potential energy, is the momentum, and is the electron rest mass.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux.
Des travaux pratiques en
The Bohr radius (a0) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is The Bohr radius is defined as where is the permittivity of free space, is the reduced Planck constant, is the mass of an electron, is the elementary charge, is the speed of light in vacuum, and is the fine-structure constant.
In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus.
In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectra of an atom. The constant first arose as an empirical fitting parameter in the Rydberg formula for the hydrogen spectral series, but Niels Bohr later showed that its value could be calculated from more fundamental constants according to his model of the atom.
The scientific progress is significantly transforming contemporary society with the introduction and widespread application of technologies like artificial intelligence and quantum computing. Despite their profound impact, these technologies necessitate en ...
EPFL2024
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
We investigate the magnetic structure and magnetoelectric(ME) effect in the high -field phase of the antiferromagnet LiFePO 4 above the critical field of 31 T. A neutron diffraction study in pulsed magnetic fields reveals the propagation vector to be q = 0 ...