In mathematical logic, interpretability is a relation between formal theories that expresses the possibility of interpreting or translating one into the other.
Assume T and S are formal theories. Slightly simplified, T is said to be interpretable in S if and only if the language of T can be translated into the language of S in such a way that S proves the translation of every theorem of T. Of course, there are some natural conditions on admissible translations here, such as the necessity for a translation to preserve the logical structure of formulas.
This concept, together with weak interpretability, was introduced by Alfred Tarski in 1953. Three other related concepts are cointerpretability, logical tolerance, and cotolerance, introduced by Giorgi Japaridze in 1992–93.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities. Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.
In mathematical logic, a tolerant sequence is a sequence of formal theories such that there are consistent extensions of these theories with each interpretable in . Tolerance naturally generalizes from sequences of theories to trees of theories. Weak interpretability can be shown to be a special, binary case of tolerance. This concept, together with its dual concept of cotolerance, was introduced by Japaridze in 1992, who also proved that, for Peano arithmetic and any stronger theories with effective axiomatizations, tolerance is equivalent to -consistency.
ML for predictive modeling is important in both industry and research. We join experts from stats and math to shed light on particular aspects of the theory and interpretability of DL. We discuss the
Owing to the diminishing returns of deep learning and the focus on model accuracy, machine learning for chemistry might become an endeavour exclusive to well-funded institutions and industry. Extending the focus to model efficiency and interpretability wil ...