Non-classical logics (and sometimes alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.
Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well. In addition, some parts of theoretical computer science can be thought of as using non-classical reasoning, although this varies according to the subject area. For example, the basic boolean functions (e.g. AND, OR, NOT, etc) in computer science are very much classical in nature, as is clearly the case given that they can be fully described by classical truth tables. However, in contrast, some computerized proof methods may not use classical logic in the reasoning process.
There are many kinds of non-classical logic, which include:
Computability logic is a semantically constructed formal theory of computability—as opposed to classical logic, which is a formal theory of truth—that integrates and extends classical, linear and intuitionistic logics.
Dynamic semantics interprets formulas as update functions, opening the door to a variety of nonclassical behaviours
Many-valued logic rejects bivalence, allowing for truth values other than true and false. The most popular forms are three-valued logic, as initially developed by Jan Łukasiewicz, and infinitely-valued logics such as fuzzy logic, which permit any real number between 0 and 1 as a truth value.
Intuitionistic logic rejects the law of the excluded middle, double negation elimination, and part of De Morgan's laws;
Linear logic rejects idempotency of entailment as well;
Modal logic extends classical logic with non-truth-functional ("modal") operators.
Paraconsistent logic (e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to.
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.
A multimodal logic is a modal logic that has more than one primitive modal operator. They find substantial applications in theoretical computer science. A modal logic with n primitive unary modal operators is called an n-modal logic. Given these operators and negation, one can always add modal operators defined as if and only if . Perhaps the first substantive example of a two-modal logic is Arthur Prior's tense logic, with two modalities, F and P, corresponding to "sometime in the future" and "sometime in the past".
Doxastic logic is a type of logic concerned with reasoning about beliefs. The term derives from the Ancient Greek (doxa, "opinion, belief"), from which the English term doxa ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation to mean "It is believed that is the case", and the set denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator. There is complete parallelism between a person who believes propositions and a formal system that derives propositions.
Deontic logic is the field of philosophical logic that is concerned with obligation, permission, and related concepts. Alternatively, a deontic logic is a formal system that attempts to capture the essential logical features of these concepts. It can be used to formalize imperative logic, or directive modality in natural languages. Typically, a deontic logic uses OA to mean it is obligatory that A (or it ought to be (the case) that A), and PA to mean it is permitted (or permissible) that A, which is defined as .
Explores the application of machine learning in medicine, emphasizing interpretability, variability between patients, and the quest for transparent equations in medical models.
Explores the evolution of generative modeling, from traditional methods to cutting-edge advancements, addressing challenges and envisioning future possibilities.
ML for predictive modeling is important in both industry and research. We join experts from stats and math to shed light on particular aspects of the theory and interpretability of DL. We discuss the
Owing to the diminishing returns of deep learning and the focus on model accuracy, machine learning for chemistry might become an endeavour exclusive to well-funded institutions and industry. Extending the focus to model efficiency and interpretability wil ...
We study quantifiers and interpolation properties in ortho- logic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based p ...
2024
, ,
We study quantifiers and interpolation properties in orthologic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based pro ...