A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.
Diving rebreather technology may be used where breathing gas supply is limited, or where the breathing gas is specially enriched or contains expensive components, such as helium diluent. Diving rebreathers have applications for primary and emergency gas supply. Similar technology is used in life-support systems in submarines, submersibles, underwater and surface saturation habitats, and in gas reclaim systems used to recover the large volumes of helium used in saturation diving.
The recycling of breathing gas comes at the cost of technological complexity and additional hazards, which depend on the specific application and type of rebreather used. Mass and bulk may be greater or less than equivalent open circuit scuba depending on circumstances. Electronically controlled diving rebreathers may automatically maintain a partial pressure of oxygen between programmable upper and lower limits, or set points, and be integrated with decompression computers to monitor the decompression status of the diver and record the .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Scientific diving is the use of underwater diving techniques by scientists to perform work underwater in the direct pursuit of scientific knowledge. The legal definition of scientific diving varies by jurisdiction. Scientific divers are normally qualified scientists first and divers second, who use diving equipment and techniques as their way to get to the location of their fieldwork. The direct observation and manipulation of marine habitats afforded to scuba-equipped scientists have transformed the marine sciences generally, and marine biology and marine chemistry in particular.
Rebreather diving is underwater diving using diving rebreathers, a class of underwater breathing apparatus which recirculate the breathing gas exhaled by the diver after replacing the oxygen used and removing the carbon dioxide metabolic product. Rebreather diving is practiced by recreational, military and scientific divers in applications where it has advantages over open circuit scuba, and surface supply of breathing gas is impracticable. The main advantages of rebreather diving are extended gas endurance, low noise levels, and lack of bubbles.
Hyperbaric treatment schedules or hyperbaric treatment tables, are planned sequences of events in chronological order for hyperbaric pressure exposures specifying the pressure profile over time and the breathing gas to be used during specified periods, for medical treatment. Hyperbaric therapy is based on exposure to pressures greater than normal atmospheric pressure, and in many cases the use of breathing gases with oxygen content greater than that of air.
Static and mobile sensor nodes can be employed in gas monitoring tasks to detect gas leaks in an early stage and localize gas sources. Due to the intermittent nature of gas plumes and the slow dynamics of commonly used gas sensors, measuring gas concentrat ...
This dataset contains aerosol optical absorption coefficients at seven different wavelengths (babs(λ)), averaged to 10 min time resolution, measured during the year-long MOSAiC expedition from October 2019 to September 2020. The measurements were performed ...
Fluidic actuation enables movement in a wide range of mechanical systems, from simple laboratory devices to more complex industrial machinery. Fluids are used to generate motion of mechanical pieces. The term "fluids" encompasses two types of technologies: ...