Hyperbaric treatment schedules or hyperbaric treatment tables, are planned sequences of events in chronological order for hyperbaric pressure exposures specifying the pressure profile over time and the breathing gas to be used during specified periods, for medical treatment. Hyperbaric therapy is based on exposure to pressures greater than normal atmospheric pressure, and in many cases the use of breathing gases with oxygen content greater than that of air.
A large number of hyperbaric treatment schedules are intended primarily for treatment of underwater divers and hyperbaric workers who present symptoms of decompression illness during or after a dive or hyperbaric shift, but hyperbaric oxygen therapy may also be used for other conditions.
Most hyperbaric treatment is done in hyperbaric chambers where environmental hazards can be controlled, but occasionally treatment is done in the field by in-water recompression when a suitable chamber cannot be reached in time. The risks of in-water recompression include maintaining gas supplies for multiple divers and people able to care for a sick patient in the water for an extended period of time.
Recompression of diving casualties presenting symptoms of decompression sickness has been the treatment of choice since the late 1800s. This acceptance was primarily based on clinical experience.
John Scott Haldane's decompression procedures and the associated tables developed in the early 1900s greatly reduced the incidence of decompression sickness, but did not eliminate it entirely. It was, and remains, necessary to treat incidences of decompression sickness.
During the building of the Brooklyn Bridge, workers with decompression sickness were recompressed in an iron chamber built for this purpose. They were recompressed to the same pressure they had been exposed to while working, and when the pain was relieved, decompressed slowly to atmospheric pressure.
Although recompression and slow decompression were the accepted treatment, there was not yet a standard for either the recompression pressure or the rate of decompression.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment.
Le , également appelé caisson de décompression ou chambre hyperbare, est une installation médicotechnique étanche au sein de laquelle un ou plusieurs patients peuvent être exposés à une pression supérieure à la pression atmosphérique, ce qui permet principalement d'accroître l'oxygénation des tissus. Lors du traitement hyperbare, un médicament, le plus souvent un gaz thérapeutique comme l'air médical, l'oxygène médical, ou un mélange de gaz médicinaux (héliox, nitrox...), peut également être administré via un masque à oxygène.
thumb|Exemple de chambre hyperbare transportable, utilisable au domicile du patient La médecine hyperbare, aussi connue sous le nom d'oxygénothérapie hyperbare, est l'utilisation médicale de l'oxygène à une pression supérieure à la pression atmosphérique. L'équipement nécessaire consiste en une chambre de pression, qui peut être constituée de parois rigides ou flexibles, et un moyen de distribution d'oxygène à 100%. Le traitement est effectué selon un programme prédéterminé par un personnel qualifié qui surveille le patient et peut le modifier si nécessaire.
Low-temperature plasmas (LTPs) at atmospheric pressure hold great promise for disinfection and sterilization applications. When compared to traditional sterilization technologies like autoclaving, LTPs may offer several benefits, including reduced energy c ...
There is described, in accordance with a first aspect of the invention, a laser treatment system and method for, in particular, imparting beneficial residual stresses into a desired part (P) during production thereof by a Selective Laser Sintering or Melti ...
2021
, ,
The influence of hydrothermal aging on the structural and catalytic properties of two commercial Fe-exchanged zeolite catalysts (Fe-FER and Fe-ZSM-5) in the extruded form employed for the removal of N2O from the exhaust of nitric acid production plants has ...