Summary
In biology, a blastomere is a type of cell produced by cell division (cleavage) of the zygote after fertilization; blastomeres are an essential part of blastula formation, and blastocyst formation in mammals. In humans, blastomere formation begins immediately following fertilization and continues through the first week of embryonic development. About 90 minutes after fertilization, the zygote divides into two cells. The two-cell blastomere state, present after the zygote first divides, is considered the earliest mitotic product of the fertilized oocyte. These mitotic divisions continue and result in a grouping of cells called blastomeres. During this process, the total size of the embryo does not increase, so each division results in smaller and smaller cells. When the zygote contains 16 to 32 blastomeres it is referred to as a morula. These are the preliminary stages in the embryo beginning to form. Once this begins, microtubules within the morula's cytosolic material in the blastomere cells can develop into important membrane functions, such as sodium pumps. These pumps allow the inside of the embryo to fill with blastocoelic fluid, which supports the further growth of life. The blastomere is considered totipotent; that is, blastomeres are capable of developing from a single cell into a fully fertile adult organism. This has been demonstrated through studies and conjectures made with mouse blastomeres, which have been accepted as true for most mammalian blastomeres as well. Studies have analyzed monozygotic twin mouse blastomeres in their two-cell state, and have found that when one of the twin blastomeres is destroyed, a fully fertile adult mouse can still develop. Thus, it can be assumed that since one of the twin cells was totipotent, the destroyed one originally was as well. Relative blastomere size within the embryo is dependent not only on the stage of the cleavage, but also on the regularity of the cleavage amongst the cells. If the number of blastomeres in the cellular mass is even, then the sizes of the cells should be congruent.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.