In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.
One of the origins of the mathematical theory of arithmetic groups is algebraic number theory. The classical reduction theory of quadratic and Hermitian forms by Charles Hermite, Hermann Minkowski and others can be seen as computing fundamental domains for the action of certain arithmetic groups on the relevant symmetric spaces. The topic was related to Minkowski's geometry of numbers and the early development of the study of arithmetic invariant of number fields such as the discriminant. Arithmetic groups can be thought of as a vast generalisation of the unit groups of number fields to a noncommutative setting.
The same groups also appeared in analytic number theory as the study of classical modular forms and their generalisations developed. Of course the two topics were related, as can be seen for example in Langlands' computation of the volume of certain fundamental domains using analytic methods. This classical theory culminated with the work of Siegel, who showed the finiteness of the volume of a fundamental domain in many cases.
For the modern theory to begin foundational work was needed, and was provided by the work of Armand Borel, André Weil, Jacques Tits and others on algebraic groups. Shortly afterwards the finiteness of covolume was proven in full generality by Borel and Harish-Chandra. Meanwhile, there was progress on the general theory of lattices in Lie groups by Atle Selberg, Grigori Margulis, David Kazhdan, M. S. Raghunathan and others. The state of the art after this period was essentially fixed in Raghunathan's treatise, published in 1972.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields.
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).
We study p-adic families of cohomological automorphic forms for GL(2) over imaginary quadratic fields and prove that families interpolating a Zariski-dense set of classical cuspidal automorphic forms only occur under very restrictive conditions. We show ho ...
We establish new results on the weak containment of quasi-regular and Koopman representations of a second countable locally compact group GG associated with nonsingular GG-spaces. We deduce that any two boundary representations of a hyperbolic locally ...
We continue our work, started in [9], on the program of classifying triples (X, Y, V), where X, Yare simple algebraic groups over an algebraically closed field of characteristic zero with X < Y, and Vis an irreducible module for Y such that the restriction ...