Beta Pictoris (abbreviated β Pictoris or β Pic) is the second brightest star in the constellation Pictor. It is located from the Solar System, and is 1.75 times as massive and 8.7 times as luminous as the Sun. The Beta Pictoris system is very young, only 20 to 26 million years old, although it is already in the main sequence stage of its evolution. Beta Pictoris is the title member of the Beta Pictoris moving group, an association of young stars which share the same motion through space and have the same age.
The European Southern Observatory (ESO) has confirmed the presence of two planets, Beta Pictoris b, and Beta Pictoris c, through the use of direct imagery. Both planets are orbiting in the plane of the debris disk surrounding the star. Beta Pictoris c is currently the closest extrasolar planet to its star ever photographed: the observed separation is roughly the same as the distance between the asteroid belt and the Sun.
Beta Pictoris shows an excess of infrared emission compared to normal stars of its type, which is caused by large quantities of dust and gas (including carbon monoxide) near the star. Detailed observations reveal a large disk of dust and gas orbiting the star, which was the first debris disk to be imaged around another star. In addition to the presence of several planetesimal belts and cometary activity, there are indications that planets have formed within this disk and that the processes of planet formation may be ongoing. Material from the Beta Pictoris debris disk is thought to be the dominant source of interstellar meteoroids in the Solar System.
Beta Pictoris is a star in the southern constellation of Pictor, the Easel, and is located to the west of the bright star Canopus. It traditionally marked the sounding line of the ship Argo Navis, before the constellation was split. The star has an apparent visual magnitude of 3.861, so is visible to the naked eye under good conditions, though light pollution may result in stars dimmer than magnitude 3 being too dim to see.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported have been observed directly, with even fewer being resolved from their host star.
An A-type main-sequence star (A) or A dwarf star is a main-sequence (hydrogen burning) star of spectral type A and luminosity class (five). These stars have spectra defined by strong hydrogen Balmer absorption lines. They measure between 1.4 and 2.1 solar masses () and have surface temperatures between 7,600 and 10,000 K. Bright and nearby examples are Altair (A7), Sirius A (A1), and Vega (A0). A-type stars do not have convective zones and thus are not expected to harbor magnetic dynamos.
An exocomet, or extrasolar comet, is a comet outside the Solar System, which includes rogue comets and comets that orbit stars other than the Sun. The first exocomets were detected in 1987 around Beta Pictoris, a very young A-type main-sequence star. There are now (as of February 2019) a total of 27 stars around which exocomets have been observed or suspected.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Beta-dicalcium silicate (beta-C2S), one of the main phases in Portland cement clinker, offers some promising overviews regarding CO2 and energy savings potential compared to alite. Understanding the crystalline structure and reactive sites on beta-C2S surf ...
Stellar candidates in the Ursa Minor (UMi) dwarf galaxy have been found using a new Bayesian algorithm applied to Gaia EDR3 data. Five of these targets are located in the extreme outskirts of UMi, from similar to 5 to 12 elliptical half-light radii (r h), ...
OXFORD UNIV PRESS2023
,
Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to d ...