Concept

Saros (astronomy)

Summary
The saros (ˈsɛərɒs) is a period of exactly 223 synodic months, approximately 6585.3211 days, or 18 years, 10, 11, or 12 days (depending on the number of leap years), and 8 hours, that can be used to predict eclipses of the Sun and Moon. One saros period after an eclipse, the Sun, Earth, and Moon return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur, in what is referred to as an eclipse cycle. A sar is one half of a saros. A series of eclipses that are separated by one saros is called a saros series. It corresponds to: 6,585.321347 solar days 18.029 years 223 synodic months 241.999 draconic months 18.999 eclipse years (38 eclipse seasons) 238.992 anomalistic months 241.029 sidereal months The 19 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one saros a new moon will take place at the same node of the orbit of the Moon, and under these circumstances another eclipse can occur. The earliest discovered historical record of what is known as the saros is by Chaldean (neo-Babylonian) astronomers in the last several centuries BC. It was later known to Hipparchus, Pliny and Ptolemy. The name "saros" (σάρος) was applied to the eclipse cycle by Edmond Halley in 1686, who took it from the Suda, a Byzantine lexicon of the 11th century. The Suda says, "[The saros is] a measure and a number among Chaldeans. For 120 saroi make 2220 years (years of 12 lunar months) according to the Chaldeans' reckoning, if indeed the saros makes 222 lunar months, which are 18 years and 6 months (i.e. years of 12 lunar months)." The information in the Suda in turn was derived directly or otherwise from the Chronicle of Eusebius of Caesarea, which quoted Berossus. (Guillaume Le Gentil claimed that Halley's usage was incorrect in 1756, but the name continues to be used.) The Greek word apparently comes from the Babylonian word "sāru" meaning the number 3600 or the Greek verb "saro" (σαρῶ) that means sweep (the sky with the series of eclipses).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.