Exposure assessment is a branch of environmental science and occupational hygiene that focuses on the processes that take place at the interface between the environment containing the contaminant of interest and the organism being considered. These are the final steps in the path to release an environmental contaminant, through transport to its effect in a biological system. It tries to measure how much of a contaminant can be absorbed by an exposed target organism, in what form, at what rate and how much of the absorbed amount is actually available to produce a biological effect. Although the same general concepts apply to other organisms, the overwhelming majority of applications of exposure assessment are concerned with human health, making it an important tool in public health.
Exposure assessment is the process of estimating or measuring the magnitude, frequency and duration of exposure to an agent, along
with the number and characteristics of the population exposed. Ideally, it describes the sources, pathways, routes, and the uncertainties in the assessment. It is a necessary part of risk analysis and hence risk assessment.
Exposure analysis is the science that describes how an individual or population comes in contact with a contaminant, including quantification of the amount of contact across space and time. 'Exposure assessment' and 'exposure analysis' are often used as synonyms in many practical contexts. Risk is a function of exposure and hazard. For example, even for an extremely toxic (high hazard) substance, the risk of an adverse outcome is unlikely if exposures are near zero. Conversely, a moderately toxic substance may present substantial risk if an individual or a population is highly exposed.
Quantitative measures of exposure are used: in risk assessment, together with inputs from toxicology, to determine risk from substances released to the environment, to establish protective standards, in epidemiology, to distinguish between exposed and control groups, and to protect workers from occupational hazards.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers recent methodology for causal inference in settings with time-varying exposures (longitudinal data) and causally connected units (interference). We will consider theory for identifi
In analytical chemistry, biomonitoring is the measurement of the body burden of toxic chemical compounds, elements, or their metabolites, in biological substances. Often, these measurements are done in blood and urine. Biomonitoring is performed in both environmental health, and in occupational safety and health as a means of exposure assessment and workplace health surveillance. The two best established environmental biomonitoring programs in representative samples of the general population are those of the United States and Germany, although population-based programs exist in a few other countries.
Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in a defined population. It is a cornerstone of public health, and shapes policy decisions and evidence-based practice by identifying risk factors for disease and targets for preventive healthcare. Epidemiologists help with study design, collection, and statistical analysis of data, amend interpretation and dissemination of results (including peer review and occasional systematic review).
Given people's significant time spent indoors, ensuring good indoor air quality (IAQ) is essential because it significantly influences occupants' health and productivity. Office buildings consume about 50% of commercial building energy and 18% of total bui ...
EPFL2023
,
Modern health and productivity concerns related to air pollutant exposure in buildings have sparked the need for occupant-centric monitoring and ventilation control. The existing personal exposure monitoring is often restricted to stationary air quality se ...
Poor indoor air quality has been associated with health issues and decreased work performance. Personal exposure that takes place both in outdoor and indoor environments is the result of dy-namic processes and complex interactions between people and surrou ...