Concept

Angular defect

Summary
In geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: the defect of a vertex of a polyhedron; the defect of a hyperbolic triangle; and the excess also arises in two ways: the excess of a toroidal polyhedron. the excess of a spherical triangle; In the Euclidean plane, angles about a point add up to 360°, while interior angles in a triangle add up to 180° (equivalently, exterior angles add up to 360°). However, on a convex polyhedron the angles at a vertex add up to less than 360°, on a spherical triangle the interior angles always add up to more than 180° (the exterior angles add up to less than 360°), and the angles in a hyperbolic triangle always add up to less than 180° (the exterior angles add up to more than 360°). In modern terms, the defect at a vertex or over a triangle (with a minus) is precisely the curvature at that point or the total (integrated) over the triangle, as established by the Gauss–Bonnet theorem. For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is negative. The concept of defect extends to higher dimensions as the amount by which the sum of the dihedral angles of the cells at a peak falls short of a full circle. The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°. The same procedure can be followed for the other Platonic solids: Descartes' theorem on the "total defect" of a polyhedron states that if the polyhedron is homeomorphic to a sphere (i.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MATH-351: Advanced numerical analysis
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Related lectures (10)
Newton Method: Convergence and Quadratic Care
Covers the Newton method and its convergence properties near the optimal point.
Photodiodes: Operation and Characteristics
Explores the operation and characteristics of photodiodes, including load resistance, junction capacitance, and sensitivity.
Brown-York Stress Tensor
Covers the Brown-York stress tensor and its relation to AdS/CFT correspondence.
Show more
Related publications (15)

Experimental observation of topological transition in linear and nonlinear parametric oscillators

Romain Christophe Rémy Fleury, Benjamin Apffel

Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...
2024

Bootstrapping smooth conformal defects in Chern-Simons-matter theories

Barak Gabai, Amit Sever

The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...
New York2024

Comparing the Buckling Strength of Spherical Shells With Dimpled Versus Bumpy Defects

Pedro Miguel Nunes Pereira de Almeida Reis, Fani Derveni, Arefeh Abbasi

We investigate the effect of defect geometry in dictating the sensitivity of the critical buckling conditions of spherical shells under external pressure loading. Specifically, we perform a comparative study between shells containing dimpled (inward) versu ...
ASME2023
Show more
Related concepts (16)
Net (polyhedron)
In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.
Icosahedron
In geometry, an icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" (-drə) or "icosahedrons". There are infinitely many non-similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the (convex, non-stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles. There are two objects, one convex and one nonconvex, that can both be called regular icosahedra.
Vertex configuration
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is only one vertex type and therefore the vertex configuration fully defines the polyhedron. (Chiral polyhedra exist in mirror-image pairs with the same vertex configuration.) A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex. The notation "a.
Show more