Concept

Angular defect

In geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: the defect of a vertex of a polyhedron; the defect of a hyperbolic triangle; and the excess also arises in two ways: the excess of a toroidal polyhedron. the excess of a spherical triangle; In the Euclidean plane, angles about a point add up to 360°, while interior angles in a triangle add up to 180° (equivalently, exterior angles add up to 360°). However, on a convex polyhedron the angles at a vertex add up to less than 360°, on a spherical triangle the interior angles always add up to more than 180° (the exterior angles add up to less than 360°), and the angles in a hyperbolic triangle always add up to less than 180° (the exterior angles add up to more than 360°). In modern terms, the defect at a vertex or over a triangle (with a minus) is precisely the curvature at that point or the total (integrated) over the triangle, as established by the Gauss–Bonnet theorem. For a polyhedron, the defect at a vertex equals 2π minus the sum of all the angles at the vertex (all the faces at the vertex are included). If a polyhedron is convex, then the defect of each vertex is always positive. If the sum of the angles exceeds a full turn, as occurs in some vertices of many non-convex polyhedra, then the defect is negative. The concept of defect extends to higher dimensions as the amount by which the sum of the dihedral angles of the cells at a peak falls short of a full circle. The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°. The same procedure can be followed for the other Platonic solids: Descartes' theorem on the "total defect" of a polyhedron states that if the polyhedron is homeomorphic to a sphere (i.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.