In computer science, termination analysis is program analysis which attempts to determine whether the evaluation of a given program halts for each input. This means to determine whether the input program computes a total function.
It is closely related to the halting problem, which is to determine whether a given program halts for a given input and which is undecidable. The termination analysis is even more difficult than the Halting problem: the termination analysis in the model of Turing machines as the model of programs implementing computable functions would have the goal of deciding whether a given Turing machine is a total Turing machine, and this problem is at level of the arithmetical hierarchy and thus is strictly more difficult than the Halting problem.
Now as the question whether a computable function is total is not semi-decidable, each sound termination analyzer (i.e. an affirmative answer is never given for a non-terminating program) is incomplete, i.e. must fail in determining termination for infinitely many terminating programs, either by running forever or halting with an indefinite answer.
A termination proof is a type of mathematical proof that plays a critical role in formal verification because total correctness of an algorithm depends on termination.
A simple, general method for constructing termination proofs involves associating a measure with each step of an algorithm. The measure is taken from the domain of a well-founded relation, such as from the ordinal numbers. If the measure "decreases" according to the relation along every possible step of the algorithm, it must terminate, because there are no infinite descending chains with respect to a well-founded relation.
Some types of termination analysis can automatically generate or imply the existence of a termination proof.
An example of a programming language construct which may or may not terminate is a loop, as they can be run repeatedly.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
The course covers the principles of chemical kinetics, including differential rate laws, derivation of exact and approximate integral rate laws for common elementary and composite reactions, fundament
In theoretical computer science, an algorithm is correct with respect to a specification if it behaves as specified. Best explored is functional correctness, which refers to the input-output behavior of the algorithm (i.e., for each input it produces an output satisfying the specification). Within the latter notion, partial correctness, requiring that if an answer is returned it will be correct, is distinguished from total correctness, which additionally requires that an answer is eventually returned, i.e.
Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Haskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Type inference in the presence of first-class or "impredicative" second-order polymorphism a la System F has been an active research area for several decades, with original works dating back to the end of the 80s. Yet, until now many basic problems remain ...
Assoc Computing Machinery2024
Formally verifying the correctness of software is necessary to merit the trust people put in software systems. Currently, formal verification requires human effort to prove that a piece of code matches its specification and code changes to improve verifiab ...
EPFL2024
, ,
We study the problem of proving termination of open, higher-order programs with recursive functions and datatypes. We identify a new point in the design space of solutions, with an appealing trade-off between simplicity of specification, modularity, and am ...