Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The envelope (E) protein is the smallest and least well-characterized of the four major structural proteins found in coronavirus virions. It is an integral membrane protein less than 110 amino acid residues long; in SARS-CoV-2, the causative agent of Covid-19, the E protein is 75 residues long. Although it is not necessarily essential for viral replication, absence of the E protein may produce abnormally assembled viral capsids or reduced replication. E is a multifunctional protein and, in addition to its role as a structural protein in the viral capsid, it is thought to be involved in viral assembly, likely functions as a viroporin, and is involved in viral pathogenesis. The E protein consists of a short hydrophilic N-terminal region, a hydrophobic helical transmembrane domain, and a somewhat hydrophilic C-terminal region. In SARS-CoV and SARS-CoV-2, the C-terminal region contains a PDZ-binding motif (PBM). This feature appears to be conserved only in the alpha and beta coronavirus groups, but not gamma. In the beta and gamma groups, a conserved proline residue is found in the C-terminal region likely involved in targeting the protein to the Golgi. The transmembrane helices of the E proteins of SARS-CoV and SARS-CoV-2 can oligomerize and have been shown in vitro to form pentameric structures with central pores that serve as cation-selective ion channels. Both viruses' E protein pentamers have been structurally characterized by nuclear magnetic resonance spectroscopy. The membrane topology of the E protein has been studied in a number of coronaviruses with inconsistent results; the protein's orientation in the membrane may be variable. The balance of evidence suggests the most common orientation has the C-terminus oriented toward the cytoplasm. Studies of SARS-CoV-2 E protein are consistent with this orientation. In some, but not all, coronaviruses, the E protein is post-translationally modified by palmitoylation on conserved cysteine residues.
Tamar Kohn, Aleksandar Antanasijevic, Kiruthika Kumar, Shotaro Torii