Bootstrapping is any test or metric that uses random sampling with replacement (e.g. mimicking the sampling process), and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods. Bootstrapping estimates the properties of an estimand (such as its variance) by measuring those properties when sampling from an approximating distribution. One standard choice for an approximating distribution is the empirical distribution function of the observed data. In the case where a set of observations can be assumed to be from an independent and identically distributed population, this can be implemented by constructing a number of resamples with replacement, of the observed data set (and of equal size to the observed data set). It may also be used for constructing hypothesis tests. It is often used as an alternative to statistical inference based on the assumption of a parametric model when that assumption is in doubt, or where parametric inference is impossible or requires complicated formulas for the calculation of standard errors. The bootstrap was published by Bradley Efron in "Bootstrap methods: another look at the jackknife" (1979), inspired by earlier work on the jackknife. Improved estimates of the variance were developed later. A Bayesian extension was developed in 1981. The bias-corrected and accelerated (BCa) bootstrap was developed by Efron in 1987, and the ABC procedure in 1992. The basic idea of bootstrapping is that inference about a population from sample data (sample → population) can be modeled by resampling the sample data and performing inference about a sample from resampled data (resampled → sample). As the population is unknown, the true error in a sample statistic against its population value is unknown.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
MATH-600: Optimization and simulation
Master state-of-the art methods in optimization with heuristics and simulation. Work involves:
  • reading the material beforehand
  • class hours to discuss the material and solve problems
  • homework
MATH-517: Statistical computation and visualisation
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice pr
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning
Show more
Related publications (135)