In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to L2 cohomology. The homology groups of a compact, oriented, connected, n-dimensional manifold X have a fundamental property called Poincaré duality: there is a perfect pairing Classically—going back, for instance, to Henri Poincaré—this duality was understood in terms of intersection theory. An element of is represented by a j-dimensional cycle. If an i-dimensional and an -dimensional cycle are in general position, then their intersection is a finite collection of points. Using the orientation of X one may assign to each of these points a sign; in other words intersection yields a 0-dimensional cycle. One may prove that the homology class of this cycle depends only on the homology classes of the original i- and -dimensional cycles; one may furthermore prove that this pairing is perfect. When X has singularities—that is, when the space has places that do not look like —these ideas break down. For example, it is no longer possible to make sense of the notion of "general position" for cycles. Goresky and MacPherson introduced a class of "allowable" cycles for which general position does make sense. They introduced an equivalence relation for allowable cycles (where only "allowable boundaries" are equivalent to zero), and called the group of i-dimensional allowable cycles modulo this equivalence relation "intersection homology". They furthermore showed that the intersection of an i- and an -dimensional allowable cycle gives an (ordinary) zero-cycle whose homology class is well-defined. Intersection homology was originally defined on suitable spaces with a stratification, though the groups often turn out to be independent of the choice of stratification.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (5)
Concepts associés (5)
Perverse sheaf
The mathematical term perverse sheaves refers to a certain associated to a topological space X, which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of Zoghman Mebkhout, gaining more popularity after the (independent) work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (intersection homology of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations (microlocal calculus and holonomic D-modules of Joseph Bernstein, Masaki Kashiwara and Takahiro Kawai).
Local system
In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. Let X be a topological space.
Théorie des singularités
vignette|droite|Visualisation de la fonction (x, y) → x2 + y2 Dans l'acception que lui a donnée René Thom, la théorie des singularités consiste à étudier des objets et des familles d'objets suivant leur degré de généricité. Dans une famille, l'objet peut subir des changements d'états ce que l'on appelle une bifurcation. Un exemple simple est donné par les courbes de niveau de la fonction : La courbe de niveau pour une valeur positive est un cercle. La valeur 0 est singulière et pour les valeurs négatives, la courbe est vide.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.