In theoretical physics, path-ordering is the procedure (or a meta-operator ) that orders a product of operators according to the value of a chosen parameter:
Here p is a permutation that orders the parameters by value:
For example:
If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection. The parameter σ that determines the ordering is a parameter describing the contour, and because the contour is closed, the Wilson loop must be defined as a trace in order to be gauge-invariant.
In quantum field theory it is useful to take the time-ordered product of operators. This operation is denoted by . (Although is often called the "time-ordering operator", strictly speaking it is neither an operator on states nor a superoperator on operators.)
For two operators A(x) and B(y) that depend on spacetime locations x and y we define:
Here and denote the invariant scalar time-coordinates of the points x and y.
Explicitly we have
where denotes the Heaviside step function and the depends on if the operators are bosonic or fermionic in nature. If bosonic, then the + sign is always chosen, if fermionic then the sign will depend on the number of operator interchanges necessary to achieve the proper time ordering. Note that the statistical factors do not enter here.
Since the operators depend on their location in spacetime (i.e. not just time) this time-ordering operation is only coordinate independent if operators at spacelike separated points commute. This is why it is necessary to use rather than , since usually indicates the coordinate dependent time-like index of the spacetime point. Note that the time-ordering is usually written with the time argument increasing from right to left.
In general, for the product of n field operators A1(t1), ...
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.
Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called stateful systems). In this formulation, time is not required to be a continuous parameter, but may be discrete or even finite. In classical physics, time evolution of a collection of rigid bodies is governed by the principles of classical mechanics. In their most rudimentary form, these principles express the relationship between forces acting on the bodies and their acceleration given by Newton's laws of motion.
Explores the Gelfand-Yaglom formula and time-ordered products in the context of the path integral representation of the propagator for a time-dependent harmonic oscillator.
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials. Motivated by the desire to efficiently simulate many-body quantum systems with ...
The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for ...
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show that t ...