Résumé
En mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire (). Les trois premières propriétés sont des conséquences évidentes de l'équation d'évolution du premier ordre. La dernière propriété vient de ce que la probabilité totale doit être conservée par l'équation d'évolution. Comme le système est donné par l'équation de Schrödinger, on a : soit : Dans le cas d'un système quantique dont l'opérateur Hamiltonien est indépendant du temps, l'opérateur d'évolution s'écrit alors : Pour un système dont le Hamiltonien est dépendant du temps, on peut résoudre par itération l'équation différentielle satisfaite par l'opérateur . On obtient : L'écriture de cette expression peut être simplifiée en introduisant l'opérateur de produit chronologique tel que : où dans le membre de gauche l'ordre des temps est quelconque, et dans le membre de droite la permutation de l'ensemble est telle que :. On a alors : Cette relation est utilisée en théorie quantique des champs pour la construction des diagrammes de Feynman. L'opérateur d'évolution permet d'établir l'équivalence entre la représentation de Schroedinger et la représentation de Heisenberg. Dans la représentation de Schrödinger, les opérateurs sont indépendants du temps et les états sont dépendants du temps. Dans la représentation de Heisenberg, les opérateurs sont dépendants du temps et les états indépendants du temps.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
PHYS-207: Quantum mechanics I
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
ME-273: Introduction to control of dynamical systems
Cours introductif à la commande des systèmes dynamiques. On part de quatre exemples concrets et on introduit au fur et à mesure un haut niveau d'abstraction permettant de résoudre de manière unifiée l
CH-244: Quantum chemistry
Introduction to Quantum Mechanics with examples related to chemistry
Afficher plus
Publications associées (43)
MOOCs associés (4)
Path Integral Methods in Atomistic Modelling
The course provides an introduction to the use of path integral methods in atomistic simulations. The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Path Integral Methods in Atomistic Modelling
The course provides an introduction to the use of path integral methods in atomistic simulations. The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Thermodynamique I
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Afficher plus