Orchestrated objective reduction (Orch OR) is a theory which postulates that consciousness originates at the quantum level inside neurons, rather than the conventional view that it is a product of connections between neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules. It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will. The hypothesis was first put forward in the early 1990s by Nobel laureate for physics, Roger Penrose, and anaesthesiologist and psychologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity.
While mainstream theories assert that consciousness emerges as the complexity of the computations performed by cerebral neurons increases, Orch OR posits that consciousness is based on non-computable quantum processing performed by qubits formed collectively on cellular microtubules, a process significantly amplified in the neurons. The qubits are based on oscillating dipoles forming superposed resonance rings in helical pathways throughout lattices of microtubules. The oscillations are either electric, due to charge separation from London forces, or magnetic, due to electron spin—and possibly also due to nuclear spins (that can remain isolated for longer periods) that occur in gigahertz, megahertz and kilohertz frequency ranges. Orchestration refers to the hypothetical process by which connective proteins, such as microtubule-associated proteins (MAPs), influence or orchestrate qubit state reduction by modifying the spacetime-separation of their superimposed states. The latter is based on Penrose's objective-collapse theory for interpreting quantum mechanics, which postulates the existence of an objective threshold governing the collapse of quantum-states, related to the difference of the spacetime curvature of these states in the universe's fine-scale structure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The quantum mind or quantum consciousness is a group of hypotheses proposing that classical mechanics alone cannot explain consciousness, positing instead that quantum-mechanical phenomena, such as entanglement and superposition, may play an important part in the brain's function and could explain critical aspects of consciousness. These scientific hypotheses are as yet untested, and can overlap with quantum mysticism. Eugene Wigner developed the idea that quantum mechanics has something to do with the workings of the mind.
Quantum cognition is an emerging field which applies the mathematical formalism of quantum theory to model cognitive phenomena such as information processing by the human brain, language, decision making, human memory, concepts and conceptual reasoning, human judgment, and perception. The field clearly distinguishes itself from the quantum mind as it is not reliant on the hypothesis that there is something micro-physical quantum-mechanical about the brain.
Sir Roger Penrose (born 8 August 1931) is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London. Penrose has contributed to the mathematical physics of general relativity and cosmology.
Near-term quantum devices can be used to build quantum machine learning models, such as quantum kernel methods and quantum neural networks (QNN), to perform classification tasks. There have been many proposals on how to use variational quantum circuits as ...
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizi ...
Nature Portfolio2024
, ,
Spontaneous Raman scattering is classically understood as an incoherent process. Here, the authors demonstrate that macroscopic quantum coherence among billions of vibrating molecules in a liquid is generated when single photon detection and single spatio- ...