A multibeam echosounder (MBES) is a type of sonar that is used to map the seabed. It emits acoustic waves in a fan shape beneath its transceiver. The time it takes for the sound waves to reflect off the seabed and return to the receiver is used to calculate the water depth. Unlike other sonars and echo sounders, MBES uses beamforming to extract directional information from the returning soundwaves, producing a swathe of depth soundings from a single ping.
Multibeam sonar sounding systems, also known as swathe (British English) or swath (American English) , originated for military applications. The concept originated in a radar system that was intended for the Lockheed U-2 high altitude reconnaissance aircraft, but the project was derailed when the aircraft flown by Gary Powers was brought down by a Soviet missile in May 1960. A proposal for using the "Mills Cross" beamforming technique adapted for use with bottom mapping sonar was made to the US Navy. Data from each ping of the sonar would be automatically processed, making corrections for ship motion and transducer depth sound velocity and refraction effects, but at the time there was insufficient digital data storage capacity, so the data would be converted into a depth contour strip map and stored on continuous film. The Sonar Array Sounding System (SASS) was developed in the early 1960s by the US Navy, in conjunction with General Instrument to map large swathes of the ocean floor to assist the underwater navigation of its submarine force. SASS was tested aboard the USS Compass Island (AG-153). The final array system, composed of sixty-one one degree beams with a swathe width of approximately 1.15 times water depth, was then installed on the USNS Bowditch (T-AGS-21), USNS Dutton (T-AGS-22) and USNS Michelson (T-AGS-23).
At the same time, a Narrow Beam Echo Sounder (NBES) using 16 narrow beams was also developed by Harris ASW and installed on the Survey Ships Surveyor, Discoverer and Researcher. This technology would eventually become Sea Beam Only the vertical centre beam data was recorded during surveying operations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Depth sounding, often simply called sounding, is measuring the depth of a body of water. Data taken from soundings are used in bathymetry to make maps of the floor of a body of water, such as the seabed topography. Soundings were traditionally shown on nautical charts in fathoms and feet. The National Oceanic and Atmospheric Administration (NOAA), the agency responsible for bathymetric data in the United States, still uses fathoms and feet on nautical charts.
Underwater acoustics or hydroacoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.
Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; the resulting time of flight, along with knowledge of the speed of sound in water, allows determining the distance between sonar and target. This information is then typically used for navigation purposes or in order to obtain depths for charting purposes.
Whereas pulse-echo ultrasound imaging relied on focused acoustic waves since its inception, the last two decades have seen the development of techniques based on unfocused waves, including ultrafast ultrasound imaging. In large part due to the emergence of ...
We present preliminary results on the morphology of the upper reaches of the Kukuy Canyon and Selenga shelf in front of Proval Bay (Lake Baikal), derived from newly acquired, high-resolution bathymetry. Numerous and varied erosional and transport features ...
2014
, ,
There has been a recent surge in methods targeting the recovery of a speed-of-sound map from pulse-echo ultrasound measurements. We focused in this work on a particular technique and identified a drawback shared by similar methods - namely the necessity of ...