Concept

Arnold conjecture

The Arnold conjecture, named after mathematician Vladimir Arnold, is a mathematical conjecture in the field of symplectic geometry, a branch of differential geometry. Let be a compact symplectic manifold. For any smooth function , the symplectic form induces a Hamiltonian vector field on , defined by the identity The function is called a Hamiltonian function. Suppose there is a 1-parameter family of Hamiltonian functions , inducing a 1-parameter family of Hamiltonian vector fields on . The family of vector fields integrates to a 1-parameter family of diffeomorphisms . Each individual of is a Hamiltonian diffeomorphism of . The Arnold conjecture says that for each Hamiltonian diffeomorphism of , it possesses at least as many fixed points as a smooth function on possesses critical points. A Hamiltonian diffeomorphism is called nondegenerate if its graph intersects the diagonal of transversely. For nondegenerate Hamiltonian diffeomorphisms, a variant of the Arnold conjecture says that the number of fixed points is at least equal to the minimal number of critical points of a Morse function on , called the Morse number of . In view of the Morse inequality, the Morse number is also greater than or equal to a homological invariant of , for example, the sum of Betti numbers over a field : The weak Arnold conjecture says that for a nondegenerate Hamiltonian diffeomorphism on the above integer is a lower bound of its number of fixed points.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.