Concept

Arnold conjecture

The Arnold conjecture, named after mathematician Vladimir Arnold, is a mathematical conjecture in the field of symplectic geometry, a branch of differential geometry. Let be a compact symplectic manifold. For any smooth function , the symplectic form induces a Hamiltonian vector field on , defined by the identity The function is called a Hamiltonian function. Suppose there is a 1-parameter family of Hamiltonian functions , inducing a 1-parameter family of Hamiltonian vector fields on . The family of vector fields integrates to a 1-parameter family of diffeomorphisms . Each individual of is a Hamiltonian diffeomorphism of . The Arnold conjecture says that for each Hamiltonian diffeomorphism of , it possesses at least as many fixed points as a smooth function on possesses critical points. A Hamiltonian diffeomorphism is called nondegenerate if its graph intersects the diagonal of transversely. For nondegenerate Hamiltonian diffeomorphisms, a variant of the Arnold conjecture says that the number of fixed points is at least equal to the minimal number of critical points of a Morse function on , called the Morse number of . In view of the Morse inequality, the Morse number is also greater than or equal to a homological invariant of , for example, the sum of Betti numbers over a field : The weak Arnold conjecture says that for a nondegenerate Hamiltonian diffeomorphism on the above integer is a lower bound of its number of fixed points.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.