Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit . The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important, as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics (organic semiconductors). This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications. Compounds called polyacetylenes also occur in nature, although in this context the term refers to polyynes, compounds containing multiple acetylene groups ("poly" meaning many), rather than to chains of olefin groups ("poly" meaning polymerization of). Polyacetylene consists of a long chain of carbon atoms with alternating single and double bonds between them, each with one hydrogen atom. The double bonds can have either cis or trans geometry. The controlled synthesis of each isomer of the polymer, cis-polyacetylene or trans-polyacetylene, can be achieved by changing the temperature at which the reaction is conducted. The cis form of the polymer is thermodynamically less stable than the trans isomer. Despite the conjugated nature of the polyacetylene backbone, not all of the carbon–carbon bonds in the material are equal: a distinct single/double alternation exists. Each hydrogen atom can be replaced by a functional group. Substituted polyacetylenes tend to be more rigid than saturated polymers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Related lectures (20)
Charge Formation and Delocalization: Solitons and Polymers
Explores charge formation and delocalization in organic materials, emphasizing solitons and polymers.
Solitons in Organic Electronics
Explores solitons in organic electronics, covering their formation, properties, and behavior in poly(acetylene), including the impact of chemical doping.
Intramolecular Electron Delocalization
Explores intramolecular electron delocalization in organic electronics, covering history, challenges, charge transport, device preparation, and advanced topics.
Show more
Related publications (57)
Related concepts (8)
Organic semiconductor
Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation. In molecular crystals the energetic separation between the top of the valence band and the bottom conduction band, i.
Plastic
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
Conductive polymer
Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.