Summary
Discrete dipole approximation (DDA), also known as coupled dipole approximation, is a method for computing scattering of radiation by particles of arbitrary shape and by periodic structures. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties by an approximation of the continuum target by a finite array of small polarizable dipoles. This technique is used in a variety of applications including nanophotonics, radar scattering, aerosol physics and astrophysics. The basic idea of the DDA was introduced in 1964 by DeVoe who applied it to study the optical properties of molecular aggregates; retardation effects were not included, so DeVoe's treatment was limited to aggregates that were small compared with the wavelength. The DDA, including retardation effects, was proposed in 1973 by Purcell and Pennypacker who used it to study interstellar dust grains. Simply stated, the DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local electric field. The dipoles interact with one another via their electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation. Nature provides the physical inspiration for the DDA - in 1909 Lorentz showed that the dielectric properties of a substance could be directly related to the polarizabilities of the individual atoms of which it was composed, with a particularly simple and exact relationship, the Clausius-Mossotti relation (or Lorentz-Lorenz), when the atoms are located on a cubical lattice. We may expect that, just as a continuum representation of a solid is appropriate on length scales that are large compared with the interatomic spacing, an array of polarizable points can accurately approximate the response of a continuum target on length scales that are large compared with the interdipole separation. For a finite array of point dipoles the scattering problem may be solved exactly, so the only approximation that is present in the DDA is the replacement of the continuum target by an array of N-point dipoles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.