**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Computational electromagnetics

Résumé

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment.
It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space. A large subfield is antenna modeling computer programs, which calculate the radiation pattern and electrical properties of radio antennas, and are widely used to design antennas for specific applications.
Several real-world electromagnetic problems like electromagnetic scattering, electromagnetic radiation, modeling of waveguides etc., are not analytically calculable, for the multitude of irregular geometries found in actual devices. Computational numerical techniques can overcome the inability to derive closed form solutions of Maxwell's equations under various constitutive relations of media, and boundary conditions. This makes computational electromagnetics (CEM) important to the design, and modeling of antenna, radar, satellite and other communication systems, nanophotonic devices and high speed silicon electronics, medical imaging, cell-phone antenna design, among other applications.
CEM typically solves the problem of computing the E (electric) and H (magnetic) fields across the problem domain (e.g., to calculate antenna radiation pattern for an arbitrarily shaped antenna structure). Also calculating power flow direction (Poynting vector), a waveguide's normal modes, media-generated wave dispersion, and scattering can be computed from the E and H fields. CEM models may or may not assume symmetry, simplifying real world structures to idealized cylinders, spheres, and other regular geometrical objects. CEM models extensively make use of symmetry, and solve for reduced dimensionality from 3 spatial dimensions to 2D and even 1D.

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées (4)

Cours associés (7)

Concepts associés (18)

Personnes associées (10)

Unités associées (7)

Séances de cours associées (59)

ME-372: Finite element method

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique

MICRO-420: Selected topics in advanced optics

This course proposes a selection of different facets of modern optics and photonics.

EE-575: Wave propagation along transmission lines

In this lecture, we will describe the theoretical models and computational methods for the analysis of wave propagation along transmission lines.

The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions.

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space.

Le principe de réciprocité, que l'on retrouve également dans d'autres domaines de la physique, s'exprime dans celui de l'électricité grâce à une relation générale entre les courants et les tensions observés aux interfaces de circuits passifs et linéaires. Ce théorème est une conséquence, en électromagnétisme, du théorème de réciprocité de Lorentz qui permet d'arriver à un résultat similaire par le biais de considérations plus fondamentales.

Méthode des éléments finis : Approche globale vs localeME-372: Finite element method

Compare les approches globales et locales de la méthode des éléments finis.

Validation des électromagnétiques calculateurs

Explore les défis de la validation des électromagnétiques informatiques, en soulignant l'importance des fonctions et des techniques de fiabilité pour la vérification et la validation.

Méthode des éléments finis : Approche localeME-372: Finite element method

Explore l'approche locale dans la méthode des éléments finis, couvrant les fonctions de forme nodale et l'assemblage.

A new Additive-Manufacturing (AM) or 3D printing concept is proposed to improve the printing resolution for metal additive manufacturing in the frame of the SFA-AM project, Powder Focusing for Beam-Induced Laser 3D Printing. The project aims to transport small powder particles (largest diameter < 10 um) at a high throughput to a spot smaller than 20 µm. To realize the objective, a metal ion included liquid is suggested as a source medium similar to the inkjet process, and the droplet is employed as a container for the metal ion transport. The key challenges of achieving this goal are 1) droplet size control and 2) efficient microwave heating that can dry the liquid portion of the dynamic droplet at a high-speed (3 m/s). The most demanding part is the development of a miniaturized, very concentrated field density microwave resonator where the droplet is passing through. This follows from the extremely short interaction time between the microwave and the ejected droplets (research: 0.5 ms) which results from the requirement for a small system size for its integration. The primary medium examined for the experiment is water due to 1) a high dielectric loss proportional to the drying efficiency and 2) avoiding explosion risks at the laser sintering stage compared to organic solutions. Various droplet generation conditions were investigated to determine the optimum conditions for the custom droplet generator, in particular, two key parameters were focused on: frequency and flow rate. The droplets obtained were analyzed with respect to size, gap distance, and linearity affecting the uniformity of the AM process. Moreover, Navier-Stokes-based fluid dynamics simulations enabled understanding of droplets behaviors, especially break-up formation. Eventually, the optimal condition for producing the smallest droplets with a diameter of 100 µm is determined to be 15 kHz and 0.5 ml/min. Such droplets loaded with metallic particles could result in smaller than 20 um of remaining metal powders aggregate after the drying process.A new TEM (Transverse ElectroMagnetic) resonator has been developed for drying and sensing applications. A full-wave electromagnetic simulation software, CST Microwave Studio, supported the working mode of the device. Firstly, it is used for the dielectric characterizations of different water-ethanol mixtures contained in a micro capillary. The sensing relies on electric field perturbation due to the inserted sample, and is measured based on the change of both resonance frequency and Q-factor. These sample-dependent variations were analyzed to estimate the complex permittivity using different methods such as the Perturbation Method (PM), Least-Square Model (LSM), and Log-Linear Model (LLM). This work demonstrates that the proposed microwave module is capable of sensing nano-liter volume ranges even though the samples only partially influence the sensing area (error < 13 % in permittivity). In microwave heating, the developed resonator achieved a temperature increase of 28 K in the microwave exposal time of 0.5 ms when the microwave power of 45 W was applied. Finally, numerical models have been proposed to estimate the maximum temperature of the initial droplet before cooling starts attributable to heat and mass transfer. This model well corresponds to the microwave electromagnetic simulation resulting in similar temperature deviations. It helps to determine the net heating efficiency of the microwave device.

Wakes and impedances of single accelerator elements can be obtained by means of theoretical calculation, electromagnetic (EM) simulations or bench measurements. Since theoretical calculations apply only to simple structures and bench measurements have some intrinsic limitations, EM simulations can be used as a reliable tool to determine wakes and impedances. This thesis will focus on the use of time domain 3D CST Particle Studio EM simulations to calculate wakes and/or impedances. First, the results of the EM simulations are compared with the known analytical solutions and other codes. In this exercise, the driving and the detuning terms of the wakes/impedances, in the transverse plane, are disentangled for both symmetric and asymmetric geometries. The sensitivity of the simulations results to the numerical parameters is discussed, as well as the limits of validity of the wake formalism and its extension to the nonlinear regime. Using the CST Wakefield Solver, the SPS kicker impedance contribution is then estimated. The simulation model was improved step by step, and successfully benchmarked with existing and new theoretical models, giving confidence in the numerical results and allowing a better understanding of the EM problems. In the case of the resistive wall impedance of simple chamber geometries a handy theoretical model has been proposed. In order to calculate the resistive wall impedance of a round chamber, a theoretical approach based on the transmission line (TL) theory, is demonstrated to be valid and practical to use. By means of appropriate form factors the method is then extended to rectangular or elliptical chambers. Moreover the method was successfully benchmarked with the most recent codes based on the field matching technique developed at CERN and was used to construct the SPS wall impedance model. For more complicated geometries (asymmetries, small inserts, holes etc.), a theoretical estimation without involving EM simulation becomes unworkable. An example of interest is the LHC beam-screen, for which CST 3D simulations were used to estimate the impedance. In order to allow the simulator to cover the whole frequency range of interest (few KHz to several tens of MHz) a novel scaling technique was developed and applied. Where possible, the EM models developed throughout this thesis were also successfully benchmarked with bench measurements (wire methods) and observations with beam. On the specific subject of bench measurements, a numerical investigation of coaxial wire measurements has been also presented. Finally, in order to verify the adopted EM models of the materials both in theoretical calculations and 3D simulations, an experimental setup for measuring EM properties (permittivity and permeability) of materials has been presented. The method is based on fitting the measured reflection transmission coefficients through a coaxial line filled with the material to be probed, with the outcome of EM simulations or theoretical models. It was successfully applied for measuring NiZn ferrites and dielectric material (e.g. SiC).

François Avellan, Arturo Rivetti

Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.