In quantum field theory, the Casimir effect (or Casimir force) is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948.
In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface, which is called the Casimir–Polder force. Their result is a generalization of the London–van der Waals force and includes retardation due to the finite speed of light. The fundamental principles leading to the London–van der Waals force, the Casimir force, and the Casimir–Polder force can be formulated on the same footing.
It was not until 1997 that a direct experiment by Steven K. Lamoreaux quantitatively measured the Casimir force to within 5% of the value predicted by the theory.
The Casimir effect can be understood by the idea that the presence of macroscopic material interfaces, such as electrical conductors and dielectrics, alter the vacuum expectation value of the energy of the second-quantized electromagnetic field. Since the value of this energy depends on the shapes and positions of the materials, the Casimir effect manifests itself as a force between such objects.
Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in turbulent water or gas illustrate the Casimir force.
In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics it is significant in some aspects of emerging microtechnologies and nanotechnologies.
The typical example is of two uncharged conductive plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The term zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space".
Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions (i.
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.
Covers Conformal Field Theory exercises on Hypergeometric functions, including AdS coordinates transformation and Casimir equation.
Explores Lie algebra, Casimirs, and Poincaré in SO(3) transformations.
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to ...
We study the evolution of magnetic fields coupled with chiral fermion asymmetry in the framework of chiral magnetohydrodynamics with zero initial total chirality. The initial magnetic field has a turbulent spectrum peaking at a certain characteristic scale ...
College Pk2023
The electromagnetic Casimir interaction between dielectric objects immersed in salted water includes a universal contribution that is not screened by the solvent and therefore long-ranged. Here, we study the geometry of two parallel dielectric cylinders. W ...