Summary
In quantum field theory, the Casimir effect (or Casimir force) is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface, which is called the Casimir–Polder force. Their result is a generalization of the London–van der Waals force and includes retardation due to the finite speed of light. The fundamental principles leading to the London–van der Waals force, the Casimir force, and the Casimir–Polder force can be formulated on the same footing. It was not until 1997 that a direct experiment by Steven K. Lamoreaux quantitatively measured the Casimir force to within 5% of the value predicted by the theory. The Casimir effect can be understood by the idea that the presence of macroscopic material interfaces, such as electrical conductors and dielectrics, alter the vacuum expectation value of the energy of the second-quantized electromagnetic field. Since the value of this energy depends on the shapes and positions of the materials, the Casimir effect manifests itself as a force between such objects. Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in turbulent water or gas illustrate the Casimir force. In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics it is significant in some aspects of emerging microtechnologies and nanotechnologies. The typical example is of two uncharged conductive plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.