Summary
In economics, diminishing returns are the decrease in marginal (incremental) output of a production process as the amount of a single factor of production is incrementally increased, holding all other factors of production equal (ceteris paribus). The law of diminishing returns (also known as the law of diminishing marginal productivity) states that in productive processes, increasing a factor of production by one unit, while holding all other production factors constant, will at some point return a lower unit of output per incremental unit of input. The law of diminishing returns does not cause a decrease in overall production capabilities, rather it defines a point on a production curve whereby producing an additional unit of output will result in a loss and is known as negative returns. Under diminishing returns, output remains positive, but productivity and efficiency decrease. The modern understanding of the law adds the dimension of holding other outputs equal, since a given process is understood to be able to produce co-products. An example would be a factory increasing its saleable product, but also increasing its CO2 production, for the same input increase. The law of diminishing returns is a fundamental principle of both micro and macro economics and it plays a central role in production theory. The concept of diminishing returns can be explained by considering other theories such as the concept of exponential growth. It is commonly understood that growth will not continue to rise exponentially, rather it is subject to different forms of constraints such as limited availability of resources and capitalisation which can cause economic stagnation. This example of production holds true to this common understanding as production is subject to the four factors of production which are land, labour, capital and enterprise. These factors have the ability to influence economic growth and can eventually limit or inhibit continuous exponential growth.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.