Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist, but below the pressure required to compress it into a solid. It can effuse through porous solids like a gas, overcoming the mass transfer limitations that slow liquid transport through such materials. SCF are much superior to gases in their ability to dissolve materials like liquids or solids. Also, near the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned". Supercritical fluids occur in the atmospheres of the gas giants Jupiter and Saturn, the terrestrial planet Venus, and probably in those of the ice giants Uranus and Neptune. Supercritical water is found on Earth, such as the water issuing from black smokers, a type of hydrothermal vent. They are used as a substitute for organic solvents in a range of industrial and laboratory processes. Carbon dioxide and water are the most commonly used supercritical fluids; they are often used for decaffeination and power generation, respectively. An interesting property is that some substances are soluble in the supercritical state of a solvent (e.g. carbon dioxide) but insoluble in the gaseous or liquid state—or vice versa. This can be used to extract a substance and transport it elsewhere in solution before depositing it in the desired place by simply allowing or inducing a phase transition in the solvent. Supercritical fluids generally have properties between those of a gas and a liquid. In Table 1, the critical properties are shown for some substances that are commonly used as supercritical fluids. †Source: International Association for Properties of Water and Steam (IAPWS) Table 2 shows density, diffusivity and viscosity for typical liquids, gases and supercritical fluids. Also, there is no surface tension in a supercritical fluid, as there is no liquid/gas phase boundary.
Athanasios Nenes, Mária Lbadaoui-Darvas, André Welti