Concept

Polyèdre de Szilassi

In geometry, the Szilassi polyhedron is a nonconvex polyhedron, topologically a torus, with seven hexagonal faces. The 14 vertices and 21 edges of the Szilassi polyhedron form an embedding of the Heawood graph onto the surface of a torus. Each face of this polyhedron shares an edge with each other face. As a result, it requires seven colours to colour all adjacent faces. This example shows that, on surfaces topologically equivalent to a torus, some subdivisions require seven colors, providing the lower bound for the seven colour theorem. The other half of the theorem states that all toroidal subdivisions can be colored with seven or fewer colors. The Szilassi polyhedron has an axis of 180-degree symmetry. This symmetry swaps three pairs of congruent faces, leaving one unpaired hexagon that has the same rotational symmetry as the polyhedron. The tetrahedron and the Szilassi polyhedron are the only two known polyhedra in which each face shares an edge with each other face. If a polyhedron with f faces is embedded onto a surface with h holes, in such a way that each face shares an edge with each other face, it follows by some manipulation of the Euler characteristic that This equation is satisfied for the tetrahedron with h = 0 and f = 4, and for the Szilassi polyhedron with h = 1 and f = 7. The next possible solution, h = 6 and f = 12, would correspond to a polyhedron with 44 vertices and 66 edges. However, it is not known whether such a polyhedron can be realized geometrically without self-crossings (rather than as an abstract polytope). More generally this equation can be satisfied precisely when f is congruent to 0, 3, 4, or 7 modulo 12. File:Szilassi_polyhedron_3D_model.svg|link={{filepath:Szilassi_polyhedron_3D_model.svg}}|Interactive orthographic projection with each face a different colour. {{nowrap|In [{{filepath:Szilassi_polyhedron_3D_model.svg}} the SVG image,]}} move the mouse left and right to rotate the model. File:Szilassi polyhedron.gif|Animation The Szilassi polyhedron is named after Hungarian mathematician Lajos Szilassi, who discovered it in 1977.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.