An attosecond (symbol as) is a unit of time in the International System of Units (SI) equal to 1×10−18 of a second (one quintillionth of a second). For comparison, an attosecond is to a second what a second is to about 31.71 billion years.
The word "attosecond" is formed by the prefix atto and the unit second. Atto- was derived from the Danish word for eighteen (atten). Its symbol is as.
An attosecond is equal to 1000 zeptoseconds, or of a femtosecond. Because the next higher SI unit for time is the femtosecond (10−15 seconds), durations of 10−17 s and 10−16 s will typically be expressed as tens or hundreds of attoseconds:
Times which can be expressed in attoseconds:
0.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of lasers to then focus on the latest developments in ultrafast radiation sources, including X-ray and gamma-ray sources, attosecond pulses generation, free
The course will cover fundamental concepts and recent developments in the field of ultrafast spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in chemistry
This course discusses the interaction between atoms and visible electro-magnetic radiation and introduces the main instrumentation for light detection and spectroscopy. The principles of LASER light s
A femtosecond is a unit of time in the International System of Units (SI) equal to 10^-15 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31.71 million years; a ray of light travels approximately 0.3 μm (micrometers) in 1 femtosecond, a distance comparable to the diameter of a virus. The word femtosecond is formed by the SI prefix femto and the SI unit second. Its symbol is fs.
Femtochemistry is the area of physical chemistry that studies chemical reactions on extremely short timescales (approximately 10−15 seconds or one femtosecond, hence the name) in order to study the very act of atoms within molecules (reactants) rearranging themselves to form new molecules (products). In a 1988 issue of the journal Science, Ahmed Hassan Zewail published an article using this term for the first time, stating "Real-time femtochemistry, that is, chemistry on the femtosecond timescale...".
A millisecond (from milli- and second; symbol: ms) is a unit of time in the International System of Units equal to one thousandth (0.001 or 10−3 or 1/1000) of a second and to 1000 microseconds. A unit of 10 milliseconds may be called a centisecond, and one of 100 milliseconds a decisecond, but these names are rarely used. To help compare orders of magnitude of different times, this page lists times between 10−3 seconds and 100 seconds (1 millisecond and one second). See also times of other orders of magnitude.
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray t ...
The pursuit of high-speed and on-chip optical communication systems has promoted extensive exploration of all-optical control of light-matter interactions via nonlinear optical processes. Here, we have numerically investigated the ultrafast dynamic switchi ...