A picosecond (abbreviated as ps) is a unit of time in the International System of Units (SI) equal to 10−12 or (one trillionth) of a second. That is one trillionth, or one millionth of one millionth of a second, or 0.000 000 000 001 seconds. A picosecond is to one second as one second is to approximately 31,689 years. Multiple technical approaches achieve imaging within single-digit picoseconds: for example, the streak camera or intensified CCD (ICCD) cameras are able to picture the motion of light.
One picosecond is equal to 1000 femtoseconds, or 1/1000 nanoseconds. Because the next SI unit is 1000 times larger, measurements of 10−11 and 10−10 second are typically expressed as tens or hundreds of picoseconds. Some notable measurements in this range include:
1.0 picoseconds (1.0 ps) – cycle time for electromagnetic frequency 1 terahertz (THz) (1 x 1012 hertz), an inverse unit. This corresponds to a wavelength of 0.3 mm, as can be calculated by multiplying 1 ps by the speed of light (approximately 3 x 108 m/s) to determine the distance traveled. 1 THz is in the far infrared.
1 picosecond – time taken by light in vacuum to travel approximately 0.30 mm
1 picosecond – half-life of a bottom quark
~1 picosecond – lifetime of a single H3O+ (hydronium) ion in water at 20 °C
picoseconds to nanoseconds – phenomena observable by dielectric spectroscopy
1.2 picoseconds – switching time of the world's fastest transistor (845 GHz, as of 2006)
1.7 picoseconds - rotational correlation time of water
3.3 picoseconds (approximately) – time taken for light to travel 1 millimeter
10 picoseconds after the Big Bang – electromagnetism separates from the other fundamental forces
34 picoseconds - signal rise time (20% to 80%) of a SFP+ transmitter for 10 Gigabit Ethernet.
10–150 picoseconds – rotational correlation times of a molecule (184 g/mol) from hot to frozen water
100 picoseconds - Unit Interval of a 10 Gbps serial communication link, such as USB 3.1.
108.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will cover fundamental concepts and recent developments in the field of ultrafast spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in chemistry
An order of magnitude of time is usually a decimal prefix or decimal order-of-magnitude quantity together with a base unit of time, like a microsecond or a million years. In some cases, the order of magnitude may be implied (usually 1), like a "second" or "year". In other cases, the quantity name implies the base unit, like "century". In most cases, the base unit is seconds or years. Prefixes are not usually used with a base unit of years. Therefore, it is said "a million years" instead of "a mega year".
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10^−9 seconds. The term combines the SI prefix nano- indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and second, the primary unit of time in the SI. A nanosecond is equal to 1000 picoseconds or microsecond. Time units ranging between 10^−8 and 10^−7 seconds are typically expressed as tens or hundreds of nanoseconds.
A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 nanoseconds or of a millisecond. Because the next SI prefix is 1000 times larger, measurements of 10−5 and 10−4 seconds are typically expressed as tens or hundreds of microseconds. 1 microsecond (1 μs) – cycle time for frequency 1e6hertz (1 MHz), the inverse unit.
Over the past decade, lead halide perovskites (LHPs) have received considerable attention thanks to their impressive optoelectronic properties. Today, LHP-based devices are one of the most efficient single-junction solar cells, with power-conversion effici ...
The absence of stray fields, their insensitivity to external magnetic fields, and ultrafast dynamics make antiferromagnets promising candidates for active elements in spintronic devices. Here, we demonstrate manipulation of the Neel vector in the metallic ...
AMER CHEMICAL SOC2022
, , , ,
The broad applications of ultrawide-band signals and terahertz waves in quantum measurements, imaging and sensing techniques, advanced biological treatments, and very-high-data-rate communications have drawn extensive attention to ultrafast electronics. In ...