Earth tide (also known as solid Earth tide, crustal tide, body tide, bodily tide or land tide) is the displacement of the solid earth's surface caused by the gravity of the Moon and Sun. Its main component has meter-level amplitude at periods of about 12 hours and longer. The largest body tide constituents are semi-diurnal, but there are also significant diurnal, semi-annual, and fortnightly contributions.
Though the gravitational force causing earth tides and ocean tides is the same, the responses are quite different.
The larger of the periodic gravitational forces is from the Moon but that of the Sun is also important.
The images here show lunar tidal force when the Moon appears directly over 30° N (or 30° S). This pattern remains fixed with the red area directed toward (or directly away from) the Moon. Red indicates upward pull, blue downward. If, for example the Moon is directly over 90° W (or 90° E), the red areas are centred on the western northern hemisphere, on upper right. Red up, blue down. If for example the Moon is directly over 90° W (90° E), the centre of the red area is 30° N, 90° W and 30° S, 90° E, and the centre of the bluish band follows the great circle equidistant from those points. At 30° latitude a strong peak occurs once per lunar day, giving a significant diurnal force at that latitude. Along the equator two equally sized peaks (and depressions) impart semi-diurnal force.
The Earth tide encompasses the entire body of the Earth and is unhindered by the thin crust and land masses of the surface, on scales that make the rigidity of rock irrelevant. Ocean tides are a consequence of tangent forces (see: equilibrium tide) and the resonance of the same driving forces with water movement periods in ocean basins accumulated over many days, so that their amplitude and timing are quite different and vary over short distances of just a few hundred kilometres. The oscillation periods of the Earth as a whole are not near the astronomical periods, so its flexing is due to the forces of the moment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables can be used for any given locale to find the predicted times and amplitude (or "tidal range"). The predictions are influenced by many factors including the alignment of the Sun and Moon, the phase and amplitude of the tide (pattern of tides in the deep ocean), the amphidromic systems of the oceans, and the shape of the coastline and near-shore bathymetry (see Timing).
Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodynamical phenomena, including crustal motion, tides, and polar motion, can be studied by designing global and national control networks, applying space geodesy and terrestrial geodetic techniques, and relying on datums and coordinate systems.
Ancient off-shore lighthouses have a phenomenal cultural significance. They were built as physical aid for navigation to guide mariners and to warn them from dangerous shallow rocky reefs. Understanding their structural response under waves loading is a ch ...
Unsaturated flow influences both the seawater extent under steady-state conditions and the propagation of tides in coastal aquifers. However, its effects on salt distributions in tidally influenced coastal aquifers are little investigated. The present stud ...
Elevated nitrate from human activity causes ecosystem and economic harm globally. The factors that control the spatiotemporal dynamics of riverine nitrate concentration remain difficult to describe and predict. We analyzed nitrate concentration from 4450 s ...