Evapotranspiration (ET) is the combined processes by which water moves from the earth's surface into the atmosphere. It covers both water evaporation (movement of water to the air directly from soil, canopies, and water bodies) and transpiration (evaporation that occurs through the stomata, or openings, in plant leaves). Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in agricultural irrigation and water resource management.
Evapotranspiration is a combination of evaporation and transpiration, measured in order to better understand crop water requirements, irrigation scheduling, and watershed management. The two key components of evapotranspiration are:
Evaporation: the movement of water directly to the air from sources such as the soil and water bodies. It can be affected by factors including heat, humidity, solar radiation and wind speed.
Transpiration: the movement of water from root systems, through a plant, and exit into the air as water vapor. This exit occurs through stomata in the plant. Rate of transpiration can be influenced by factors including plant type, soil type, weather conditions and water content, and also cultivation practices.
Evapotranspiration is typically measured in millimeters of water per a set unit of time. Globally, it is estimated that on average between three-fifths and three-quarters of land precipitation is returned to the atmosphere via evapotranspiration.
Evapotranspiration does not, in general, account for other mechanisms which are involved in returning water to the atmosphere, though some of these, such as snow and ice sublimation in regions of high elevation or high latitude, can make a large contribution to atmospheric moisture even under standard conditions.
Because evaporation and transpiration occur when water moves into the air, levels of evapotranspiration in a given area are primarily controlled by:
the amount of water present;
the amount of energy present in the air and soil (e.g.