Summary
A molecular solid is a solid consisting of discrete molecules. The cohesive forces that bind the molecules together are van der Waals forces, dipole-dipole interactions, quadrupole interactions, π-π interactions, hydrogen bonding, halogen bonding, London dispersion forces, and in some molecular solids, coulombic interactions. Van der Waals, dipole interactions, quadrupole interactions, π-π interactions, hydrogen bonding, and halogen bonding (2-127 kJ mol−1) are typically much weaker than the forces holding together other solids: metallic (metallic bonding, 400-500 kJ mol−1), ionic (Coulomb’s forces, 700-900 kJ mol−1), and network solids (covalent bonds, 150-900 kJ mol−1). Intermolecular interactions, typically do not involve delocalized electrons, unlike metallic and certain covalent bonds. Exceptions are charge-transfer complexes such as the tetrathiafulvane-tetracyanoquinodimethane (TTF-TCNQ), a radical ion salt. These differences in the strength of force (i.e. covalent vs. van der Waals) and electronic characteristics (i.e. delocalized electrons) from other types of solids give rise to the unique mechanical, electronic, and thermal properties of molecular solids. Molecular solids are poor electrical conductors, although some, such as TTF-TCNQ are semiconductors (ρ = 5 x 102 Ω−1 cm−1). They are still substantially less than the conductivity of copper (ρ = 6 x 105 Ω−1 cm−1). Molecular solids tend to have lower fracture toughness (sucrose, KIc = 0.08 MPa m1/2) than metal (iron, KIc = 50 MPa m1/2), ionic (sodium chloride, KIc = 0.5 MPa m1/2), and covalent solids (diamond, KIc = 5 MPa m1/2). Molecular solids have low melting (Tm) and boiling (Tb) points compared to metal (iron), ionic (sodium chloride), and covalent solids (diamond). Examples of molecular solids with low melting and boiling temperatures include argon, water, naphthalene, nicotine, and caffeine (see table below). The constituents of molecular solids range in size from condensed monatomic gases to small molecules (i.e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.