The ultimatum game is a game that has become a popular instrument of economic experiments. An early description is by Nobel laureate John Harsanyi in 1961. One player, the proposer, is endowed with a sum of money. The proposer is tasked with splitting it with another player, the responder (who knows what the total sum is). Once the proposer communicates his decision, the responder may accept it or reject it. If the responder accepts, the money is split per the proposal; if the responder rejects, both players receive nothing. Both players know in advance the consequences of the responder accepting or rejecting the offer.
For ease of exposition, the simple example illustrated above can be considered, where the proposer has two options: a fair split, or an unfair split. The argument given in this section can be extended to the more general case where the proposer can choose from many different splits.
A Nash equilibrium is a set of strategies (one for the proposer and one for the responder in this case), where no individual party can improve their reward by changing strategy. If the proposer always makes an unfair offer, the responder will do best by always accepting the offer, and the proposer will maximize their reward. Although it always benefits the responder to accept even unfair offers, the responder can adopt a strategy that rejects unfair splits often enough to induce the proposer to always make a fair offer. Any change in strategy by the proposer will lower their reward. Any change in strategy by the responder will result in the same reward or less. Thus, there are two sets of Nash equilibria for this game:
The proposer always makes an unfair offer, and the responder always accepts an unfair offer. (The proposer never gives a fair offer so the responder can accept fair offers with any frequency without affecting the average reward.)
The proposer always makes a fair offer. The responder rejects unfair offers often enough to make fair offers at least as profitable as unfair offers, and always accepts fair offers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The dictator game is a popular experimental instrument in social psychology and economics, a derivative of the ultimatum game. The term "game" is a misnomer because it captures a decision by a single player: to send money to another or not. Thus, the dictator has the most power and holds the preferred position in this “game.” Although the “dictator” has the most power and presents a take it or leave it offer, the game has mixed results based on different behavioral attributes.
Experimental economics is the application of experimental methods to study economic questions. Data collected in experiments are used to estimate effect size, test the validity of economic theories, and illuminate market mechanisms. Economic experiments usually use cash to motivate subjects, in order to mimic real-world incentives. Experiments are used to help understand how and why markets and other exchange systems function as they do. Experimental economics have also expanded to understand institutions and the law (experimental law and economics).
Cooperation (written as co-operation in British English and, rarely, coöperation) is the process of groups of organisms working or acting together for common, mutual, or some underlying benefit, as opposed to working in competition for selfish benefit. Many animal and plant species cooperate both with other members of their own species and with members of other species (symbiosis or mutualism).
Many important problems in contemporary machine learning involve solving highly non- convex problems in sampling, optimization, or games. The absence of convexity poses significant challenges to convergence analysis of most training algorithms, and in some ...
Oligopolistic competition occurs in various transportation markets. In this paper, we introduce a framework to find approximate equilibrium solutions of oligopolistic markets in which demand is modeled at the disaggregate level using discrete choice models ...
Many transportation markets are characterized by oligopolistic competition. In these markets customers, suppliers and regulators make decisions that are influenced by the preferences and the decisions of all other agents. In particular, capturing and under ...