Dounreay (ˌduːnˈreɪ; Dùnrath) is a small settlement and the site of two large nuclear establishments on the north coast of Caithness in the Highland area of Scotland. It is on the A836 road west of Thurso.
The nuclear establishments were created in the 1950s. They were the Nuclear Power Development Establishment (NPDE) for the development of civil fast breeder reactors, and the Vulcan Naval Reactor Test Establishment (NRTE), a military submarine reactor testing facility. Both these no longer perform their original research functions and will be completely decommissioned, some of which has been in progress for a while. The two establishments have been a major element in the economy of Thurso and Caithness, but this will decrease with the progress of decommissioning.
The NPDE will enter an interim care and surveillance state by 2036, and become a brownfield site by 2336. An announcement in July 2020 that the Nuclear Decommissioning Authority (NDA) will be taking over direct management of the site from the site licence company Dounreay Site Restoration Limited (DSRL) in 2021 has alleviated fears of 560 job losses.
The NRTE is to be decommissioned under a ten-year contract starting in 2023, ending in the creation of a brownfield site, which would be transferred to the NDA.
Dounreay is the site of Dounreay Castle (now a ruin) and its name derives from the Gaelic for 'fort on a mound'. Dounreay was the site of the battle of Sandside Chase in 1437. Robert Gordon's map of Caithness, 1642, uses Dounrae as the name of the castle. William J. Watson's The Celtic Place-names of Scotland gives the origin as Dúnrath, possibly a reference to a broch.
Dounreay was the site of a Second World War airfield, named RAF Dounreay. It became HMS Tern (II) in 1944 when the airfield was transferred to the Admiralty from RAF Coastal Command as a satellite of HMS Tern at Twatt in Orkney. It never saw any action during the war and was placed into care and maintenance in 1949.
There are two nuclear sites at Lower Dounreay built on and around the site of the former airfield.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nuclear decommissioning is the process leading to the irreversible complete or partial closure of a nuclear facility, usually a nuclear reactor, with the ultimate aim at termination of the operating licence. The process usually runs according to a decommissioning plan, including the whole or partial dismantling and decontamination of the facility, ideally resulting in restoration of the environment up to greenfield status. The decommissioning plan is fulfilled when the approved end state of the facility has been reached.
A liquid metal cooled nuclear reactor, or LMR is a type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for breeder reactor power generation. They have also been used to power nuclear submarines. Due to their high thermal conductivity, metal coolants remove heat effectively, enabling high power density. This makes them attractive in situations where size and weight are at a premium, like on ships and submarines.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor.
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Reactor core cooling, power limits and technological consequences due to fuel, cladding and coolant properties, main principles of reactor and power plant design including auxiliary systems are explai
Zirconium alloys used in the nuclear industry are exposed to extreme conditions undergoing high levels of irradiation damage and corrosion. Zircaloy-2 is used as nuclear fuel cladding in boiling water reactors and for the encapsulation of the spallation ta ...
Introduces Generation IV nuclear reactors, focusing on fast-spectrum reactors and their sustainability, breeding of fissile fuel, properties of coolants, historical development, advantages, disadvantages, and key challenges.
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
The sequence of codes Serpent/DYN3D has been developed by the Helmholtz-Zentrum Dresden-Rossendorf and successfully applied to core static and transient analyses of sodium-cooled fast reactors (SFRs). The successful application of the sequence to SFRs was ...