Perfluorooctanesulfonic acid (PFOS) (conjugate base perfluorooctanesulfonate) is a chemical compound having an eight-carbon fluorocarbon chain and a sulfonic acid functional group and thus a perfluorosulfonic acid. It is an anthropogenic (man-made) fluorosurfactant, now regarded as a global pollutant. PFOS was the key ingredient in Scotchgard, a fabric protector made by 3M, and related stain repellents. The acronym "PFOS" refers to the parent sulfonic acid and to various salts of perfluorooctanesulfonate. These are all colorless or white, water-soluble solids. Although of low acute toxicity, PFOS has attracted much attention for its pervasiveness and environmental impact. It was added to Annex B of the Stockholm Convention on Persistent Organic Pollutants in May 2009.
In 1949, 3M began producing PFOS-based compounds by electrochemical fluorination resulting in the synthetic precursor perfluorooctanesulfonyl fluoride. In 1968, organofluorine content was detected in the blood serum of consumers, and in 1976 it was suggested to be perfluorooctanoic acid (PFOA) or a related compound such as PFOS. In 1997, 3M detected PFOS in blood from global blood banks, although the company's internal documents indicate knowledge of this decades earlier, dating from the 1970s. In 1999, the U.S. Environmental Protection Agency began investigating perfluorinated compounds after receiving data on the global distribution and toxicity of PFOS, the key ingredient in Scotchgard. For these reasons, and USEPA pressure, the primary American producer of PFOS, 3M, announced, in May 2000, the phaseout of the production of PFOS, PFOA, and PFOS-related products. PFOS and PFOS-related chemicals are currently produced in China.
The main method used for the industrial scale production of PFOS is electrochemical fluorination (ECF). ECF is an electrolysis production method where a precursor of perfluorooctanesulfonyl fluoride is dispersed in a solution of hydrogen fluoride and electrolyzed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Per- and polyfluoroalkyl substances (PFAS or PFASs) are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain. An early definition, from 2011, required that they contain at least one perfluoroalkyl moiety, –CnF2n+1–. Beginning in 2021, the Organisation for Economic Co-operation and Development (OECD) expanded their terminology, stating that "PFASs are defined as fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom (without any H/Cl/Br/I atom attached to it), i.
Perfluorooctanoic acid (PFOA; conjugate base perfluorooctanoate; also known colloquially as C8, for its 8 carbon chain structure) is a perfluorinated carboxylic acid produced and used worldwide as an industrial surfactant in chemical processes and as a material feedstock. PFOA is considered a surfactant, or fluorosurfactant, due to its chemical structure, which consists of a perfluorinated, n-heptyl "tail group" and a carboxylate "head group". The head group can be described as hydrophilic while the fluorocarbon tail is both hydrophobic and lipophobic.
Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity.
Explores Persistent Organic Pollutants (POPs) sources, bioaccumulation potential, and toxicity, focusing on PAHs and pesticides impact on the environment and human health.
Low-temperature plasmas (LTPs) at atmospheric pressure hold great promise for disinfection and sterilization applications. When compared to traditional sterilization technologies like autoclaving, LTPs may offer several benefits, including reduced energy c ...
Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may al ...
The hydrolysis of lignocellulose is the first step in saccharide based bio-refining. The recovery of homogeneous acid catalysts imposes great challenges to the feasibility of conventional hydrolysis processes. Herein, we report a strategy to overcome these ...